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Abstract—Membership inference (MI) attacks are more diverse
in a Federated Learning (FL) setting, because an adversary
may be either an FL client, a server, or an external attacker.
Existing defenses against MI attacks rely on perturbations to
either the model’s output predictions or the training process.
However, output perturbations are ineffective in an FL setting,
because a malicious server can access the model without output
perturbation while training perturbations struggle to achieve a
good utility. This paper proposes a novel defense, called CIP, to
fortify FL against MI attacks via a client-level input perturbation
during training and inference procedures. The key insight is
to shift each client’s local data distribution via a personalized
perturbation to get a shifted model. CIP achieves a good balance
between privacy and utility. Our evaluation shows that CIP
causes accuracy to drop at most 0.7% while reducing attacks
to random guessing.

I. INTRODUCTION

Membership inference (MI) attacks [23], [29], [40], [41],
[45], [55], [57] allow an adversary to infer if a given sample
belongs to a target model’s training dataset. For example,
adversaries may be able to determine whether a medical image
from an hospital was used to train a machine learning based
diagnostic system, thus potentially violating patients’ protected
health information (PHI) and the Health Insurance Portability
and Accountability Act (HIPAA). Under the setting of federated
learning (FL) [13], [28], [32], [33], [42], [61], Nasr et al. [38]
show that MI attacks are more severe as opposed to centralized
learning especially when the server is potentially malicious.
Such a malicious server poses a unique threat because the server
has access to multiple local models during every iteration.

Existing defenses against membership inference attacks are
mostly designed for centralized learning and can be broadly
classified into two approaches, i.e., relying on either output or
training perturbations. Although many of them can be extended
to FL, none of them consider the complicated threat model and
distributed nature of FL. On one hand, output perturbations,
e.g., MemGuard [26], perturb the target model’s output for a
given input to conceal its membership status. However, such
defenses—designed for centralized learning under a blackbox
setting—are largely ineffective in FL where both server and
client adversaries know the model and can obtain outputs
without perturbation.

On the other hand, training perturbation based approaches
tamper the training process of the target model via regulariza-
tion [30], [37], [45], [57] or differential privacy [24], [44], [53].
For instance, adversarial regularization [37] models MI attacks

as a regularization term to be used in the training of the target
model. Differential privacy (DP), particularly DP-SGD [6],
adds perturbations to the gradients in training process such
that no single training sample has a significant impact on the
learned target model. However, the trade-off between utility
and privacy remains a challenging problem: when existing
perturbation-based defenses achieve privacy by reducing MI
attack accuracy to a certain degree, the target model’s accuracy
is substantially reduced so as to make the system useless. Using
DP as an example. Jayaraman [25] et al. show that the model’s
accuracy on CIFAR-100 decreases by 50% with a fairly large
ε value as 10.

In this paper, we propose a novel defense against MI attacks,
called CIP (Client-level Input Perturbation), which is designed
specifically for federated learning. The key insight is to shift
each client’s local data distribution via adding personalized
perturbation to the local data at both training and inference
time. Specifically, the perturbation of CIP is carefully designed
with minimizing the training loss over the perturbed training
data. In addition, CIP maximizes the training loss over the
original training data with a controllable weight so that their
outputs from the trained model assemble other non-members.
At training time, CIP jointly optimizes an additive, personalized
perturbation to training data and local model at each local
FL client. Then, at inference time, CIP also adds the same
perturbation to every input sample for each local FL model.
Intuitively, CIP defends against MI attacks because neither a
malicious server/client nor other external adversary can infer
the original data distribution via MI attacks against the shifted
local model or global model aggregated at the server.

One advantage of CIP is to preserve the FL utility via
offsetting each client’s local data distribution to better fit the
global model via the personalized perturbation. Intuitively, such
perturbation, shifts client data distribution and mitigates client
heterogeneity via minimizing the training loss on returned
global model, thus improving utility. CIP also integrates the
existing learning model structure (e.g., ResNet and DenseNet,
as a backbone) into a dual-channel architecture to better capture
features of training data with the perturbation and further
improve utility.

We evaluate CIP against MI attacks both theoretically and
empirically. From the theoretical perspective, we demonstrate
that the strongest MI attack to CIP is provably less effective
when the attacker does not have access to the perturbation.
Empirically, we also evaluate CIP on four benchmark datasets



with six adaptive attacks: Our evaluation shows that CIP can
reduce not only state-of-the-art but also adaptive MI attacks’
efficacy (which proactively guess the input perturbation) to
nearly random guessing without sacrificing model’s accuracy.
As a comparison, state-of-the-art defenses, including adversarial
regularization, differential privacy, and MMD + Mixup, all
reduce MI attacks to nearly random guessing but entail an
unavoidable and substantial reduction of the model’s accuracy.

To summarize, the contributions of our work are as follows:
• We propose an effective and novel defense, CIP, against

MI attacks on federated learning models trained from private
data samples with multiple sources. CIP preserves model
utility for clients with the input perturbation while reducing
the MI attack to random guessing.
• We formulate the generation of client-level input perturba-

tion as an optimization problem and also propose a dual-
channel neural network architecture to preserve the model’s
accuracy.
• We analytically prove we can combat the strongest adaptive

attack via our defense. We also empirically compare CIP
with state-of-the-art defenses on four datasets.

II. OVERVIEW

In this section, we give an overview of CIP. We first present
the problem definition and the motivation of CIP and then
describe the key ideas and threat model.

A. Problem Definition and Notations

Notations. Without loss of generality, we denote D as the
training set with n training samples for learning a model, also
called a target model. z = (x, y) is a training sample, where
x ∈ Rd is the training input and y its label. We denote the
learning model’s parameters as θ and the prediction function
as f .
Membership inference attack. Given the target model
parameters θ and a data sample z = (x, y), a MI attack aims
to infer whether z is in the training set D. In particular, an MI
attack essentially computes the following probability:

Pr(m = 1 | θ, z), (1)

where m is a binary random variable that indicates the
membership status of the data sample z. Specifically, m = 1
indicates that z ∈ D and m = 0 indicates that z /∈ D. For
instance, an attacker infers z to be a member of D if and only
if Pr(m = 1 | θ, z) > 0.5.

B. Motivation

In this subsection, we motivate our idea of perturbation
using two examples: (i) a toy example on a pair of numbers
following linear distribution, and (ii) a mini-scale experiment
on a real-world dataset.

First, let us consider a toy example where all the training
samples follow a strict linear distribution, i.e., θ∗(X) = 2X+1,
but all the testing samples deviate from, and are scattered
around, this linear distribution. An MI attack is obviously
possible here: an adversary can infer zi = (1, 3) ∈ D is
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Figure 1. Motivation of CIP using ResNet-50 on CIFAR-100 (1(a) shows
that members and non-members have drastic different loss value distribution.
Then, intuitively, 1(b) shows that CIP shifts the loss value distribution and
makes them alike between members and non-members for the defense.)
a member with the MSE loss value MSE(zi, θ

∗) = 0; by
contrast, a testing sample zj = (1.5, 5) is a non-member with
MSE(zj , θ

∗) = 1.
We now explain why CIP defends against this MI attack.

Let us assume that CIP shifts the training data distribution via
B(X) = ((1 − α)X + αt) with α = 0.5 and t = 2. Ideally,
the model trained from perturbed data D is θ∗B = θ∗ ◦B−1 =
4X − 3 where the perturbation function B is invertible in
this particular case. Therefore, we can obtain MSE(zi, θ

∗
B) =

MSE(zj , θ
∗
B) = 4, making them non-separable.

There are two things worth noting here. On one hand,
no adaptive attacks would be able to infer the original data
distribution in this toy example as long as the personalized
B is kept local at the FL client. The reason is that the server
and other clients only know θ∗B = 4X − 3, which conceals the
original data distribution. Furthermore, the functional space B
is infinite and independent from θ∗B , making it nearly impossible
to make guesses. On the other hand, CIP preserves the utility
of the original model: As long as θ∗ is optimal, θ∗B is as well
given an invertible B.

Second, since the toy example is ideal albeit illustrative,
we now demonstrate our motivation beyond the toy example
using a real-world training task using ResNet-50 on CIFAR-
100 with 10,000 training data (members) and 10,000 testing
data (non-members). Our perturbation is similar to B(X) as
described in the toy example, but adds another channel, i.e.,
((1 + α)X − αt), to better preserve original samples’ features
(More details can be found in Section III-A). Figure 1 shows
the probability density on recorded loss values before and
after applying CIP. Clearly, members and non-members are
easily separable on the original θ∗ in Figure 1(a) as opposed
to the highly overlapped distributions on the shifted θ∗B in
Figure 1(b).

C. Threat model

Our threat model considers both internal and external
adversaries of federated learning. We now describe both
adversaries following Nasr et al. [38]:
• Internal adversary. An internal adversary could be either

a malicious client or a malicious server. Because a server
adversary is stronger than a client adversary and can perform
all the attacks of a client, for simplicity, we use the malicious
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Figure 2. A visualization of optimization steps in CIP using image data as an
example in defending against MI attacks. There are two general steps for CIP:
(I) Generating perturbations, and (II) Learning the target model. The pipeline
of non-image data, such as Purchase-50, is the same except that x is a vector
and t is optimized starting from random noise with the same dimension as x.

server as worse case scenario and an upper bound of both
malicious server and client.
• External adversary. An external adversary could be a

malicious third party that is not involved in the training, but
has white-box access to the final global model’s parameters.
That is, an external adversary observes the final global
model’s weights and makes an inference based on the
observation.

III. METHODOLOGY

A. Overall Workflow

The key idea of CIP is to let each client generate a unique
perturbation t ∈ Rd that can be applied locally on both training
and testing data. t is personalized for each local client and
should be kept as secret from other clients and adversaries.
From the utility perspective, the perturbation is optimized by
minimizing the training loss of the model in order for a shifted
data distribution to better fit the model; the model’s parameter
distribution trained on data with the input perturbation is also
shifted to cope with potential adversaries who query the model
with original training or testing data and thus achieves higher
privacy guarantee. Keeping perturbation locally is on par with
recently proposed personalized federated learning works [43],
[47], [58] which allow each client to use different local training
strategy.

Next, we describe two important parts of the data perturba-
tion process in CIP which depicts (i) how training and testing
data samples are perturbed, and (ii) how perturbed data are
used during training and inference time by CIP.
Data Perturbation. We describe next how to perturb training
and testing data, i.e., incorporating the perturbation t with
federated learning. During the training stage, each client Ci
generates a unique ti for its own training data and then trains
a local model with each input xi blended with ti. Formally,
we have:

xti = B(xi, ti) = ((1− α)xi + αti, (1 + α)xi − αti), (2)

where B is our blending function, α is called blending
parameter, and the blended input xt is a pair composed of
(1− α)x+ αt and (1 + α)x− αt. The blended input is then
clipped within the range of x for further processing. Such a
blended input includes more information about the original
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Figure 3. Our dual-channel neural network architecture. Specifically, both
components of a blended input, i.e., (1 − α)x + αt and (1 + α)x − αt,
separately go through a backbone and then a global average pooling (GAP)
layer. Then, the two GAP outputs are concatenated and processed by a fully
connected layer. Note that the dual-channel architecture is model agnostic
because the backbone can be replaced by any model architecture, e.g., ResNet
or DenseNet.

input x and the perturbation t, which enables a better privacy-
utility trade-off. Then, the client communicates the local model
to the server, and the server aggregates all local models and
then sends the aggregation results back to each client. During
testing and inference times, each client Ci also adds their own
perturbation ti to use the trained global model.
Dual-channel Model. In this part, we describe how CIP
accepts perturbed data via a novel dual-channel neural net-
work architecture for improving utility. Figure 3 shows this
architecture, which contains the following parts: a backbone
network accepting two channels, a global average pooling
(GAP) layer, a fully connected layer for concatenation, and
a softmax layer. The backbone network may include any
existing neural network structures, including ConvNets such as
DenseNet, and ResNet, or transformers (e.g. vision transformer
or Swin), which is then finally connected with an additional
global average pooling (GAP) layer. The backbone takes two
channels’ inputs separately to produce two outputs and then
the outputs from these two channels are concatenated as an
input to the GAP layer. That is why the size of the GAP layer
is twice as large as a normal GAP layer if it is connected with
the backbone.

There are two advantages of using a dual-channel architec-
ture. First, dual-channel inputs keep more features of original
sample x while introducing the input perturbation t, which
largely maintains the utility. Second, using one backbone means
that both channels share the same model instead of placing two
same-structured backbones, thus reducing the overall model’s
size. Then, the fully connected layer concatenates the outputs
from the GAP layer and feeds the outputs to the softmax layer
for prediction.

B. Formulating CIP as an Optimization Problem

In this subsection, we describe how to formulate CIP as an
optimization problem via two steps: (i) generating perturbations
and (ii) learning the target model. Note that for simplicity, we
denote by Dt = {(xt, y) | (x, y) ∈ D,xt = B(x, t)} the
training samples with the perturbation blended. We also denote
by zt = (xt, y) a data sample with the perturbation blended.

Main goals. We aim to achieve the following two goals for
both steps of CIP:



• Goal 1. Protecting membership privacy of the original
training samples D from adversaries.
• Goal 2. Preserving accuracy / utility of the target model

for inputs blended with the perturbation for clients.
Intuitively, Goal 1 means that the target model should not
memorize the original training samples in D, so as not to leak
their membership status to adversaries. Goal 2 means that the
target model can accurately classify an input when it is blended
with the perturbation. In particular, we alternately perform the
following two steps as shown in the top part of Figure 2:

1) Step I: Generating Perturbations: Step I is shown in the
top part marked as “Backpropagation, perturbation updates”
in Figure 2. Given a target model, we aim to generate a
perturbation to achieve Goal 2, i.e., the perturbation minimizes
the loss over the training samples Dt. Formally, we formulate
generating such a perturbation via the following optimization
problem:

min
t
Lt where Lt =

1

n

∑
zt∈Dt

l(θ, zt) + λt|t|1, (3)

whereby l(θ, zt) is a loss function of the target model θ for
a training sample zt blended with the perturbation (the first
sum term is the cross entropy), |t|1 is used to regularize the
magnitude of the perturbation, and λt is a hyperparameter to
balance the two terms. In our implementation, we choose the
cross entropy as the first loss term in Equation (3).

We generate the perturbation in Step I via directly treating
perturbation t as variable. Specifically, we initialize the
perturbation t as some random input. Then, we use the standard
stochastic gradient descent (SGD) to solve the optimization
problem in Equation (3) with respect to t.

2) Step II: Learning the Target Model: Step II is shown
on the bottom part of Figure 2 marked as “Backpropagation,
model parameter updates”. Given a perturbation t, we aim to
learn a target model to achieve both Goal 1 and Goal 2, i.e.,
the target model maximizes the loss over the original training
samples D while minimizing the loss over the training samples
with the perturbation blended Dt. We formulate learning the
model as the following optimization problem:

min
θ
Lm where Lm =

1

n

∑
zt∈Dt

l(θ, zt)−
λm
n

∑
z∈D

l(θ, z), (4)

whereby λm is a hyperparameter to balance the two cross
entropy loss terms to avoid abnormally high loss on original
data. We note that the standard training of the target model
aims to minimize the loss term 1

n

∑
z∈D l(θ, z) as opposed to

maximizing the loss term in CIP.

C. Theoretical Adversarial Advantage Analysis

In this subsection, we theoretically analyze privacy provided
by CIP via adaptive attacker’s adversarial membership inference
advantage. We first define the attacker’s adversarial advantage
(Adv) as below:

Adv(θ, z) =
Pr(m = 1 | θ, z)
Pr(m = 0 | θ, z)

. (5)

Intuitively, the adversarial advantage is a way to quantify the
membership privacy for a data sample z: A larger adversarial
advantage corresponds to less membership privacy.

We then have Theorem 1 based on the definition of
adversarial advantage. The intuition taken from the theorem
is that an adversary does not gain an additional adversarial
advantage when guessing a perturbation that is different from
the original one. More specifically, Theorem 1 shows the gap
between these two adversarial advantages, as represented by
ε, depends on the loss difference between two data samples
with true and guessed input perturbation: A large difference
in the loss indicates a small adversary advantage. In other
words, for the strongest MI attacks, our defense achieves better
membership privacy when an attacker does not know our secret
trigger.

Theorem 1. Given a target model θ, our true perturbation
t, and a perturbation t′ guessed by an attacker. Assume
l(θ, zt) ≤ l(θ, zt′). Then, the adversarial advantage Adv(θ, zt′)
is bounded by the adversarial advantage Adv(θ, zt). Formally,
we have the following:

Adv(θ, zt′) = ε ·Adv(θ, zt), (6)

where ε = e−
1
T (l(θ,zt′ )−l(θ,zt)) ≤ 1, and T is the temperature

parameter.

Proof. We denote by a binary random variable mt the mem-
bership status for zt. By applying the Bayes’ rule, we have:

Pr(mt = 1 | θ, zt) =
Pr(mt = 1, θ | zt)

Pr(θ | zt)
=

γt · ηt
γt · ηt + βt · (1− ηt)

,
(7)

where γt = Pr(θ | mt = 1, zt), βt = Pr(θ | mt = 0, zt), and
ηt = Pr(mt = 1 | zt). Therefore, the adversarial advantage
Adv(θ, zt) is as follows:

Adv(θ, zt) =
Pr(mt = 1 | θ, zt)
Pr(mt = 0 | θ, zt)

=
γt · ηt

βt · (1− ηt)
. (8)

For Adv(θ, zt′), since when mt = 0 (or mt′ = 0), θ does
not depend on zt (or zt′ ), we have βt′ = βt. Moreover, since
ηt (or ηt′ ) essentially is the prior probability that zt (or zt′ ) is
a member without observing anything from the target model,
we have ηt′ = ηt. Thus, we have:

Adv(θ, zt′)

Adv(θ, zt)
=
γt′

γt
=

Pr(θ | mt′ = 1, zt′)

Pr(θ | mt = 1, zt)
. (9)

Following previous work [40], we assume that the target
model θ follows a probability distribution determined by the
training loss used to learn the target model. This is reasonable
because the randomness presented in θ can be due to the
training process, such as Bayesian posterior sampling, or occurs
naturally, as is the case with Stochastic Gradient methods.
Therefore, θ follows the following probability distribution:

Pr(θ | Dt) ∝ e−
n
T Lm (10)

= e−
1
T

∑
zt∈Dt

L(θ,zt), (11)



where T is the temperature parameter and L(θ, zt) = l(θ, zt)−
λml(θ, z). Given the above probability distribution for the target
model θ, we define the posterior over the parameters given a
sample zt and its memberships mt:

Pr(θ | mt = 1, zt) =
1

ct
· En−1

r∼Zt
[e−

1
T L(θ,r)] · e− 1

T L(θ,zt)

(12)

where Zt is the probability distribution of zt, En−1 is the
expected value over n − 1 samples (except zt), and ct is
defined as follows (ct′ is similar):

ct =

∫
θ

En−1
r∼Zt

[e−
1
T L(θ,r)] · e− 1

T L(θ,zt)dθ. (13)

If we consider θ to be the set of all possible model
parameters θ = {θ1, θ2, θ3, ..., θi, ...}, because zt and zt′

are linear combinations of (x, t) and (x, t′), respectively,
there exists a transformation A such that A(zt′) = zt,
L(θi, zt) = L(θi,A(zt′)). In other words, there must exist
j, k ∈ [1, i] such that L(θj , z

j
t ) = L(θk, z

k
t′). Then the integral

of e−
1
T L(θ,zt) with respect to θ is equal to the integral of

e−
1
T L(θ,zt′ ) with respect to θ, and thus ct = ct′ .
Since l(θ, zt) ≤ l(θ, zt′) (as l(θ, zt) is minimized during

training), we have:

Adv(θ, zt′)

Adv(θ, zt)
=

ct
ct′
· e− 1

T (L(θ,zt′ )−L(θ,zt)) (14)

=
ct
ct′
· e− 1

T (l(θ,zt′ )−l(θ,zt)) (15)

=
ct
ct′
· ε = ε ≤ 1 (16)

IV. EXPERIMENTAL SETUP

We implement CIP with 1,563 lines of Python 3.8 code based
on TensorFlow 2.4.0. The implementation is open-source at this
anonymous repository (https://github.com/yhhmia/CIP). All the
experiments are performed using a GeForce RTX 2080 and
Titan XP graphics cards (NVIDIA).

A. Dataset and Model Setting

In this section, we describe different learning models used by
CIP and the evaluation. we describe our deep learning models
set-up for both internal and external adversaries for five datasets:
(i) CIFAR-100 (a popular benchmark dataset with 100 classes
containing 600 images each), (ii) CIFAR-AUG (CIFAR-100
with data augmentation, i.e., each image being resized to 80×80,
cropped to 64×64, and being flipped from left to right), (iii) CH-
MNIST (a benchmark dataset [27] of 5,000 histological images
of human colorectal cancer including 8 classes of tissues), and
(iv) Purchase-50 (a dataset from Kaggle’s “Aquired Valued
Shoppers Challenge”, which contains 20,000 data samples of
purchase history of 50 shoppers: half for training and half for
shadow model in which some member inference attacks uses
to train the attack model).

Next, we describe our deep learning models set-up for both
internal and external adversaries. Following the approach of

Table I
[INTERNAL ADVERSARY SETUP] PARAMETERS OF LEGACY MODEL

(WITHOUT DEFENSE) AND CIP. (LR: LEARNING RATE; PER.:
PERTURBATION; ACC.: ACCURACY).

Model Legacy Model Parameters CIP Parameters

#clients #Train iter Train acc. Test acc. #Attacking iter lr (per.)λm λt

ResNet

2 120 0.970 0.545 80, 100, 120 1e-2 1e-61e-8
5 300 0.985 0.543 180, 240, 300 1e-2 1e-61e-8

10 500 0.975 0.529 300, 400, 500 1e-2 1e-61e-8
20 800 0.957 0.357 600, 700, 800 1e-2 1e-61e-8
50 1500 0.924 0.328 1300, 1400, 1500 1e-2 1e-61e-8

DenseNet

2 300 0.943 0.565 180, 240, 300 1e-2 1e-61e-8
5 600 0.921 0.587 400, 500, 600 1e-2 1e-61e-8

10 1000 0.929 0.504 800, 900, 1000 1e-2 1e-61e-8
20 1500 0.932 0.372 1300, 1400, 1500 1e-2 1e-61e-8
50 3000 0.948 0.332 2800, 2900, 3000 1e-2 1e-61e-8

VGG

2 300 0.907 0.613 180, 240, 300 1e-2 1e-61e-8
5 600 0.882 0.614 400, 500, 600 1e-2 1e-61e-8

10 1000 0.947 0.541 800, 900, 1000 1e-2 1e-61e-8
20 1500 0.982 0.471 1300, 1400, 1500 1e-2 1e-61e-8
50 3000 0.966 0.424 2800, 2900, 3000 1e-2 1e-61e-8

Table II
[EXTERNAL ADVERSARY SETUP] PARAMETERS OF LEGACY MODEL

(WITHOUT DEFENSE) AND CIP. (LR: LEARNING RATE; PER.:
PERTURBATION; ACC.: ACCURACY).

Dataset Model Legacy Model Parameters CIP Parameters

#Train iter Train acc. Test acc. lr (training) lr (per.) λm λt

CIFAR-100 ResNet 40 0.998 0.323 5e-5 1e-3 1e-12 1e-6
CIFAR-AUG ResNet 40 0.986 0.434 5e-5 1e-3 1e-12 1e-3
CH-MNIST ResNet 70 0.993 0.899 5e-5 1e-3 1e-12 1e-6
Purchase-50 MLP 40 0.991 0.755 5e-5 1e-3 1e-12 1e-12

prior work [45], we use several models with different overfitting
characteristics and robust levels, including some that are overfit
(and with low accuracy), and some that are not (with high
accuracy), and some with and without data augmentation. The
batch size are set to be 32 for all cases.

• Internal Adversary. First, Table I shows the hyperparam-
eters, and testing and training accuracies of target models.
Specifically, we follow the averaging aggregation method
used by prior works [28], [38], with the number of clients as
2,5,10,20 and 50. We denote communication rounds between
client and server as training iteration shown in the table,
and we set default value of local training epoch as 1. Our
evaluation and model accuracies are consistent with prior
work [38]: We use SGD optimizer to train the local model
with decaying learning rate of 1e-3, 5e-4, and 1e-4. Second,
Table I shows the hyperparameters of CIP. It is worth noting
that the training iteration of the target models without CIP
doubles compared with these with CIP. The attack iterations
are in consistent with prior work [38].
• External Adversary. Table II shows the hyperparameters,

and testing and training accuracies of target models. we
adopt ResNet50 for CIFAR-100, CIFAR-AUG, CH-MNIST,
and multilayer perceptron (MLP) model with three dense
layers with size of 512, 256, and 128 for Purchase-50.
Prior work [38] shows that the less the number of clients,
the more vulnerable the target model is. To evaluate the
worst-case scenario for our defense, we intentionally set the

https://github.com/yhhmia/CIP


number of clients as one to enhance external adversaries.
Let us describe all the models on different datasets. The
CIFAR-100 model is overfitted with a low testing accuracy of
0.323. We follow this for MI attacks as demonstrated in the
literatures [23], [29], [40], [41], [45], [57]; The CH-MNIST
model is well trained with a high testing accuracy (i.e.,
0.899). The CIFAR-AUG model adopts data augmentation:
The purpose is to show that CIP can be combined with other
data augmentation techniques. The Purchase-50 model is to
show the applicability of CIP on non-image datasets.

B. Membership Inference Attack Setting

In this subsection, we describe the settings of different MI
attacks for both internal and external adversaries.

• Internal Adversary. State-of-the-art MI attacks [38] on
internal adversary assume either the server or a client
is malicious. We assume the server is malicious in the
evaluation because it is a stronger threat model compared
to a malicious client. There are two types of server attacks:
passive and active. Following Nasr et.al [38], for passive
attacks, we attack on several latest iterations, shown in the
Table I; for active attack, we repeat gradient ascent for
each epoch of the training and select 100 members and 100
nonmembers to test.
• External Adversary. External adversaries targets at final

released global model. There are two types: output-based
(Ob) and parameter-based (Pb). The former needs the model’s
output and the latter needs the model’s parameters in
addition to its outputs. We evaluate four state-of-the-art
attacks: Ob-Label (an output-based attack [57] using label
information), Ob-MALT (a Bayes Optimal output-based
attack [40]), Ob-NN (an output-based attack using Neural
Networks [41], [45]), Ob-BlindMI (the state-of-the-art output-
based attack [23] using differential comparison), and Pb-
bayes (the state-of-the-art parameter-based attack [29] using
Bayes)

V. EVALUATION

In this section, we evaluate CIP in answering the following
four Research Questions (RQs).

• [RQ1] How does CIP compare with existing defenses in
terms of testing accuracy and attack accuracy?
• [RQ2] How does CIP maintain the performance benefits

brought by federated learning?
• [RQ3] How effective is CIP in defending against different

variations of MI attacks?
• [RQ4] How effective is CIP in defending against adaptive

adversaries?
• [RQ5] What are the performance and model size overheads

of CIP?

A. RQ1: Comparison with Prior Defenses

In this research question, we compare CIP with five state-
of-the-art defenses:

• Differential Privacy (DP). We use an open-source imple-
mentation [4] of DP-Adam [6] with different ε values for
the comparison.
• High-Accuracy Differential Privacy (HDP). We use an

open-source implementation [2] of a recent improvement of
DP [48] with different ε values for the comparison.
• Adversarial Regularization (AR). We adopt an open-source

version [1] for the comparison and change the hyperparameter
λ to control the privacy level.
• Mixup + MMD (MM). We implement the defense

following Li et al. [30]. The tunable parameter controlling
the weight of MMD loss is called µ.
• RelaxLoss (RL). We adopt an open-source version [3],

[11] for the comparison and change the hyperparameter ω
to control the privacy level.
The comparison is based on two metrics, testing accuracy and

attack accuracy, under both internal and external adversaries
as documented in Section II-C.
Comparison under Internal Adversaries. In this part, we
compare CIP with differential privacy against internal ad-
versaries. Specifically, we use local DP (LDP) because the
alternative, i.e., central DP (CDP), does not defend against
a malicious server as assumed in an internal adversary [38].
We set the δ = 1e− 5 and evaluate different values of ε for
DP. We did not include AR and MM because there are no
implementations of either defense against internal adversaries in
federated learning. We use CIFAR-100 in this experiment with
50,000 training data and 10,000 testing data, while attacking
we regard each client’s training data as members and use the
same size of testing data as non-members. We follow Naseri
et al. [36]’s non-i.i.d data distribution as our default setting,
i.e., 20 random classes per client. We follow Milad et al. [38]
to use the same size of training data for all clients, which
is selected uniformly at random from the chosen classes of
data sample. Our comparison is based on three perspectives:
(i) different clients (ii) different model architectures, and (iii)
different ε values.

First, we compare CIP with both DP and HDP with different
number of clients. Figure 4(a) shows the testing accuracy of
three approaches: CIP outperforms both DP and HDP. DP’s
testing accuracy is significantly lower than CIP and no defense
even when ε is set to be 128. The performance of DP is
getting worse as the number of clients increases, which drops
to approximately 0.05 when FL has 20 or 50 clients. HDP’s
testing accuracy is on par with or sometimes higher than no
defense when ε is also 128. The reason is the augmentation
by additional training data of ImageNet. As a comparison,
the performance of CIP also drops but is relatively stable.
Interestingly, the testing accuracy with CIP is generally higher
than without defenses. The reason is that CIP allows each
client to optimize a local perturbation, which can shift the
heterogeneous local data distribution to align with the others,
thus the accuracy is even better than no defense. We will discuss
more details about different data distributions in RQ2. We then
look at the attack accuracies in Figure 4(b). The active and
passive attack accuracies for CIP is close to random guessing
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Figure 4. [RQ1-Internal]: Comparison of CIP (α = 0.5), DP, HDP, and no
defense with different # of clients.
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(b) Attack Accuracy vs. Different Model
Figure 5. [RQ1-Internal]: Comparison of CIP (α = 0.5) and DP with varied
models and two clients under varied ε.

for any number of clients. As a comparison, the active attack
accuracies for DP and HDP are still a little bit high when we
have two clients because of the large ε value. This observation
aligns with prior work [38]. Then, both attack accuracies for
DP and HDP also drop as the number of clients increases. For
no defense, both active and passive attacks accuracies of no
defense are much higher than the ones of CIP.

Secondly, we compare CIP and DP using three model
architectures, i.e., VGG, DenseNet, and ResNet. Figure 5(a)
shows the testing accuracies. VGG performs the best in terms
of testing accuracy, then is DenseNet and ResNet. This trend
is the same for both CIP and DP. We then look at the attack
accuracies in Figure 5(b). Still, VGG performs the best with
the lowest attack accuracy, and the performances of ResNet
and DenseNet are similar with ResNet being slightly more
robust to attacks.

Thirdly, we observe the performance of DP as the value of ε
increases. Let us start from the testing accuracy in Figure 5(a).
The testing accuracies of three model architectures are all
below 0.1 when ε equals to one; when ε increases to 256, the
model’s testing accuracies all increase to around 0.3, which
is about half of CIP’s testing accuracy. We then look at the
attack accuracy in Figure 5(b). When ε is smaller than 64, the
attack accuracy is very close to random guessing. Then, the
attack accuracy increases as the ε value increases. It is very
hard to find a balance of privacy and utility in DP for federated
learning.

[RQ1] Take-away-Internal: CIP outperforms DP with a
higher testing accuracy and a similar attack accuracy
for different number of clients and different model
architectures under an internal adversary.

Comparison under External Adversary. In this part, we
compare CIP with state-of-the-art approaches against external
adversary. We use CH-MNIST in this experiment as it has
high testing accuracy with reasonable attacking accuracy. We
use 2,500 balanced-class data as training data (members while
attacking) and 2,500 balanced-class data as testing data (non-
members while attacking). Note that to evaluate the defense
ability of CIP in the worst case scenario, we consider the most
vulnerable system with one client so that external adversaries
can achieve higher attack accuracy without defense.
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Figure 6. [RQ1-External]: Comparison of CIP and state-of-the-art defenses
(including DP, HDP, AR, RL, and MM) using CH-MNIST dataset.

• Testing accuracy comparison. In this part, we compare the
model’s performance in terms of the testing accuracy of
all approaches. Figure 6(a) shows the testing accuracy of a
model with no defense, CIP, local DP (LDP, or for short
DP in this subsubsection), AR, and MM, as the privacy
budget changes. Specifically, we select ε (for DP and HDP)
as [1, 2, 8, 16, 32], λ (for AR) as [0.3, 0.7, 1, 1.5, 2],
µ (for MM) as [0.5, 1, 2.5, 5, 10], ω (for RelaxLoss) as
[0.5, 1, 2.5, 5, 10]. First, the model’s accuracy is very close
for CIP (with α value as 0.9 to provide better privacy)
and no defense. (Note that the accuracy is a constant line
because there is no privacy budget value for no defense.)
That is, CIP can provide practical defense against MI
attacks without sacrificing mode’s performance. Second, the
existing defenses are struggling in maintaining the utility
while preserving the privacy. The testing accuracy of DP
decreases as the ε decreases because a smaller ε provides
better privacy. Even if with a relatively large ε = 32, the
accuracy drops for 40%. HDP improves over DP in terms
of testing accuracy. Specifically, HDP brings around 20%
to 40% accuracy improvement, especially with a small ε
(e.g., 1 or 2), compared with the original DP. However, the
testing accuracy still drops between 11% and 25% of HDP
compared with CIP. Similarly, the testing accuracy drops are
40% to 50% of AR, 10% to 20% of MM, and 1% to 20%
of RelaxLoss with different privacy budgets as a comparison
with CIP.
• Attack accuracy comparison. In this part, we compare the

attack accuracy of different approaches using Pb-Bayes, the
state-of-the-art, strongest, whitebox attack. Figure 6 shows
the attack accuracy of no defense, CIP, DP, AR, MM. First,



Table III
[RQ2] ACCURACY OF CIP, NO DEFENSE AND LOCAL TRAINING WITH

DIFFERENT DATA DISTRIBUTIONS OF CIFAR-100 AND FIVE CLIENTS,
WHICH SPANS FROM NON-I.I.D. TO I.I.D.

Data Distribution 20 (non-i.i.d.) 40 60 80 100 (i.i.d.)
(classes per client)

CIP (ours) 0.683 0.676 0.672 0.670 0.665
No Defense 0.611 0.635 0.653 0.668 0.672

Local Training∗ 0.674 0.616 0.525 0.483 0.439
∗: Note that local training only learns a model with the number of classes that it has.
That is why the accuracy for a non-i.i.d. setting is higher than that for an i.i.d. setting.

For example, local training learns a 20-class classifier in a non-i.i.d. setting, and a
100-class classifier in an i.i.d. setting. This also demonstrates an advantage of

collaborative training, which brings additional classes one client does not have.

the attack accuracy for models with no defense is high,
being around 0.69. Then, all defenses bring down the attack
accuracy to around 0.5. Second, the attacking accuracies
against existing defenses increases and are higher than CIP
when their privacy budget is set for better utility, i.e., ε ≥ 8
for DP, λ ≤ 2 for AR, µ ≤ 2.5 for MM, which again
indicates that they cannot find the trade-off between utility
and privacy.

[RQ1] Take-away-External: On the testing accuracy
perspective, CIP preserves model’s accuracy while existing
defenses, particularly DP, AR, and MM, decrease the
model’s accuracy from 10% to 70%. On the privacy
perspective, CIP with α = 0.9 can defend against white-
box membership inference attack effectively as DP, AR,
and MM do with appropriate privacy budget.

B. RQ2: Maintenance of FL’s Performance

In this research question, we show that CIP still maintains
the performance benefits brought by FL and most importantly
outperforms training a local model without federated learning.
We use CIFAR-100 in this experiment with 50,000 training
data and 10,000 testing data divided equally by five clients. We
set the data distribution from non-i.i.d to i.i.d, i.e., 20, 40, 60,
80, 100 classes per client. Note for both CIP and no defense
federated learning, we evaluate each client’s testing data on
the aggregated global model (100-class classification problem
no matter what data distribution) and get the average testing
accuracy; for local training, we evaluate each client’s testing
data on her own local model (20-class classification if the data
distribution is 20 classes per client.) and get the average testing
accuracy. There is no aggregation during the training process,
which is, each local model is trained on 10,000 local training
data. We want to show the benefits that CIP brings to federated
learning which can not be achieved by local training.
CIP vs. No defense. We first compare CIP with no defense as
shown in the CIP and “No Defense” rows of Table III. As the
data distribution becomes more non-i.i.d., i.e., the number of
classes assigned to each client decreases, the testing accuracy
of no defense decreases which is aligned with the previous
work [32], [42] while that of CIP increases slightly. On the
contrary, as the data distribution becomes more i.i.d., the testing
accuracy of no defense increases while that of CIP drops
slightly.
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Figure 7. Earth mover distance (EMD) of client’s training loss with different
data heterogeneity. CIP shifts such distributions for non-i.i.d. data.

Note that the testing accuracy of CIP is higher than no
defense with data distribution as 20, 40, 60, 80 classes per client.
Even when the data distribution is 100 classes per client (i.i.d.),
CIP gets a 0.007 accuracy drop than the model without any
defenses. This improvement for non-i.i.d. data is comparable
to the performance improvement of personalized federated
learning [32], [42], [54]. Our perturbation is personalized for
each FL client and not aggregated at the server. Therefore,
such perturbation can shift data distribution of clients to be
close to each other. As a comparison, in an i.i.d. scenario, such
a personalized perturbation does not help much, i.e., CIP will
not perturb data too much since each client’s data distribution
already aligns with each other and therefore there is only a
slight accuracy drop comparing CIP and no defense.

To further explain why CIP improves FL’s performance for
non-i.i.d. data, we run an experiment of CIP on CIFAR-100
with ten clients and α = 0.3. Specifically. we use the Earth
Mover Distance (EMD) between the client’s local training loss,
on local data, during all training iterations to represent local
data distribution differences between clients. Our calculation of
EMD is as follows. We calculate each client-side, local model’s
training loss for each training round and then record the losses
across all the training round as the distribution of training loss.
Then, we calculate the Earth Mover Distance (EMD) of such
distributions between all client pairs. The value in Figure V-B
is the average EMD (training loss) between every two clients
among ten clients. Compared with no defense, CIP can shift
data distribution to reduce the distance between local training
loss for heterogeneous data distribution (e.g., non-i.i.d.), thus
improving FL’s performance.
CIP vs. Local training. We then compare CIP with local
training with client collaboration under FL. The purpose is to
show that CIP can improve the model’s performance compared
to a local model trained with local dataset alone. It is worth
noting that the benefits brought by collaborative training like
FL are not only performance but also the number of classes
especially under a non-i.i.d. setting where other clients may
have labelled classes that one client does not have.

The CIP and “Local Training” rows of Table III show the
testing accuracies. Compared with CIP, local training’s accuracy
is always lower than CIP. The reasons are as follows. (i) CIP
can benefit from federated learning in which the global model is
aggregated from all clients’ local model, so the size of training
data can be regarded as 50,000 while the local training is only
10,000. (ii) CIP can shift the data distribution to align with each



other under non-i.i.d. distribution, and therefore CIP can still
outperform local training even under a non-i.i.d. setting with 20
classes per client. Another thing worth noting is that the model’s
testing accuracy of local training is the highest at 20 classes
per client and becomes lower when the number of classes
increases. The reason is that the 20-class classification problem
is much easier than the 100-class classification problem.

[RQ2] Take-away: The performance of CIP is on par
with, and sometimes (i.e., under non-i.i.d. setting) even
better than, FL without any defense. CIP maintains the
performance benefits brought by a collaborative learning
like FL because the performance of CIP is always better
than local training (i.e., without contribution from other
clients).

C. RQ3: State-of-the-art MI attacks

In this research question, we evaluate CIP against five differ-
ent state-of-the-art MI attacks as documented in Section IV-B.
We adopt four different datasets against external adversaries.
We show CIP can decrease the attacking accuracy effectively
while maintaining the testing accuracy. We focus on an external
adversary with the same setting described in Section V-A.
Attack Accuracy. We start from attack accuracy and show the
accuracies of different attacks in Figure 8 (with Figure 8(a)
on CIFAR-100, Figure 8(b) on CIFAR-AUG, Figure 8(c) on
CH-MNIST, and Figure 8(d) on Purchase-50) as the blending
parameter α increases. First, the attack performance decreases
as the α value increases. This is because the larger the α is,
the more perturbations that CIP brings to the original image
is. In practice (e.g., in RQ1), we use a α as 0.9 to provide a
privacy protection of the model.

Second, let us compare different datasets. The attack accuracy
on CIFAR-100 is the highest and the accuracies on both CIFAR-
AUG, CH-MNIST, and Purchase-50 are quite similar. The
reason is that the model on CIFAR-100 is extremely overfitted,
but the other three are less overfitted as shown in Section IV-A.
This aligns with observations from prior works [23], [40], [41],
[45], [57] and also exists in the presence of CIP.

Third, let us compare different attacks against CIP. We
start by comparing parameter-based with output-based attacks
against CIP. Pb-Bayes is the most powerful attack against CIP,
the reason is that Pb-Bayes has access to the model’s parameters
in addition to the outputs. We then look at three different output-
based attacks. The performances of three attacks are similar to
Ob-BlindMI.
Attack Precision, Recall, and F1-score. We also describe
and compare different MI attacks’ precision, recall and F1-
score against CIP (α = 0.7) in Table IV. We report several
observations here. First, CIP is generally effective in reducing
both attacks’ recall and precision, i.e., recall value below 0.5
and precision value around 0.5. Second, CIP performs better in
reducing recall than precision, and the reason is that CIP leads
the attacker to misclassify the training data without perturbation
as testing data, which results in a high false-positive rate. The
precision and recall are generally balanced for Ob-NN, but

Table IV
[RQ3] PRECISION, RECALL, F1-SCORE AND ACCURACY OF DIFFERENT

ATTACKS AGAINST CIP (α = 0.7).

Dataset Attack Precision Recall F1-Score Accuracy

CIFAR-100

Ob-Label 0.539 0.256 0.347 0.518
Ob-MALT 0.598 0.105 0.178 0.517

Ob-NN 0.509 0.326 0.397 0.506
Ob-BlindMI 0.515 0.468 0.491 0.515

Pb-Bayes 0.686 0.447 0.541 0.621

CIFAR-AUG

Ob-Label 0.537 0.388 0.450 0.527
Ob-MALT 0.522 0.159 0.244 0.506

Ob-NN 0.484 0.259 0.373 0.491
Ob-BlindMI 0.474 0.022 0.041 0.499

Pb-Bayes 0.615 0.235 0.341 0.544

CH-MNIST

Ob-Label 0.506 0.451 0.477 0.506
Ob-MALT 0.523 0.215 0.305 0.509

Ob-NN 0.497 0.373 0.426 0.498
Ob-BlindMI 0.523 0.263 0.350 0.511

Pb-Bayes 0.588 0.317 0.412 0.548

Purchase-50

Ob-Label 0.524 0.234 0.324 0.511
Ob-MALT 0.534 0.237 0.328 0.515

Ob-NN 0.506 0.408 0.451 0.505
Ob-BlindMI 0.524 0.371 0.434 0.517

Pb-Bayes 0.528 0.357 0.426 0.519

Table V
[RQ3] TESTING ACCURACY OF CIP WITH DIFFERENT α ON DIFFERENT

DATASETS.

Dataset α
0 (No defense) 0.1 0.3 0.5 0.7 0.9

CIFAR-100 0.323 0.335 0.328 0.327 0.323 0.316
CIFAR-AUG 0.434 0.474 0.457 0.436 0.422 0.398
CH-MNIST 0.899 0.921 0.904 0.905 0.903 0.892
Purchase-50 0.755 0.768 0.757 0.754 0.755 0.741

extremely unbalanced for Ob-MALT, which leads to a generally
low F1-score for Ob-MALT. Third, the attack F1-score against
CIP is generally on par with, and lower than, the attack accuracy,
which indicates that attack accuracy is a good metrics for the
evaluation of defense. In other words, CIP is highly effective
in reducing the attack recall against Ob-MALT, which leads to
the unbalance.

Testing Accuracy. We then illustrate that CIP can maintain
testing accuracy comparing with no defense in Table V. We
observe that CIP will not decrease the testing accuracy if
appropriate α is adopted, e.g., α ≤ 0.5. However, if a larger α,
e.g., α ≥ 0.7, is applied for the purpose of stronger defense, the
accuracy decrease is 1.6% on average. It is worth noting that
ideally if the model can fully recover the original samples like
a simple linear model, α should have no impact on the model’s
accuracy. At the same time, such recovery is not always ensured
in practice, and therefore a larger α increases the weight of
perturbation and decreases that of original sample, thus hurting
testing accuracy in some extreme scenarios such as α = 0.9.

[RQ3] Take-away: CIP is effective against various
state-of-the-art MI attacks in reducing attack accuracy,
precision, recall and F-1 Score, while maintaining the
testing accuracy. We commonly use α = 0.9 in practice
for strong defense.
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Figure 8. [RQ3]: State-of-the-art MI attack accuracy against CIP on different datasets.

Table VI
[RQ4-ADAPTIVE-OPTIMIZATION-1] ATTACK ACCURACY

(INTERNAL-PASSIVE/EXTERNAL) AGAINST DIFFERENT DATASETS WITH
PROBING THE TARGET MODEL TO OPTIMIZE t.

Dataset α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

CIFAR-100 0.950/0.948 0.901/0.892 0.769/0.746 0.698/0.649 0.642/0.606
CIFAR-AUG 0.702/0.681 0.669/0.662 0.625/0.618 0.603/0.586 0.578/0.564
CH-MNIST 0.653/0.658 0.639/0.631 0.622/0.617 0.608/0.596 0.570/0.573
Purchase-50 0.624/0.614 0.609/0.597 0.556/0.545 0.539/0.536 0.541/0.533

D. RQ4: Adaptive Adversaries

In this research question, we evaluate the effectiveness of CIP
in defending against six different adaptive adversaries trying
to guess client’s perturbation. We classify these six adversaries
into two categories: optimization-based and knowledge-based.
The former (Optimization-1, 2) allows the adversaries to probe
the target model to optimize a t or optimize the target model
directly in a malicious way. The latter (Knowledge-1, 2, 3, 4)
assumes adversaries have prior knowledge of CIP’s mechanism
or training data to launch a one-time attack. We choose Pb-
Bayes as the external one since it is the strongest as we can
seen in previous RQs. We set the number of clients as one as
the most vulnerable target model.

1) Optimizaiton-based Attacks: We describe two adaptive
attacks below, which are based on optimization.
[Optimization-1] Passive Observe + Probe + t Optimization.
The first adversary passively observes the model, probes the
target model to obtain a shadow dataset, and then optimizes
a perturbation to maximize the target model’s accuracy on
the data set. Such an adversary could be either internal or
external. Specifically, the external adversary queries the final
target model with 2,000,000 times for CIFAR-100/CIFAR-AUG
and 50,000 times for CH-MNIST corresponding to the size
of attack datasets. Similarly, the internal adversary queries the
local model from the last fifth rounds with the same number
of times as the external.

Table VI shows attack accuracy as the α value increases.
First, the attack accuracy decreases as the α increases. Second,
internal adversary achieve higher attack accuracy, 0.02 on
average, compared to external adversary due to the accessing
to internal training process. Third, for each α value, we do
observe that this adaptive attack improves the attack accuracy
a little bit, e.g., 0.01 to 0.08. However, when α is large enough,
e.g., 0.9 in our deployment, the overall attack accuracy is still

Table VII
[RQ4-ADAPTIVE-OPTIMIZATION-2] INTERNAL ACTIVE ATTACK ACCURACY

ON DIFFERENT DATASETS.

Dataset α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

CIFAR-100 0.758 0.672 0.608 584 0.547
CIFAR-AUG 0.602 0.565 0.533 0.531 0.519
CH-MNIST 0.540 0.535 0.521 0.519 0.505
Purchase-50 0.522 0.520 0.515 0.516 0.511

Table VIII
[RQ4-ADAPTIVE-KNOWLEDGE-1] ATTACK ACCURACY ON DIFFERENT

DATASETS WITH PUBLIC SEED, α AND SHADOW t

Dataset SSIM(client’s seed, adversary’s seed)
0.1 0.3 0.5 0.7 1.0

CIFAR-100 0.575 0.586 0.607 0.618 0.624
CIFAR-AUG 0.542 0.551 0.550 0.562 0.569
CH-MNIST 0.532 0.534 0.549 0.566 0.571
Purchase-50 0.518 0.521 0.525 0.534 0.538

very low, i.e., being close to random guessing for all three
datasets.
[Optimization-2] Active Alteration + Optimization. The
second adversary actively alters the target model uploaded
to the server. Specifically, the adversary trains the model in
the direction of reducing the loss value on a target dataset and
sends the altered model back to the client. Then, in the next
round, the adversary queries the updated model with the target
dataset and classifies those with a larger loss as members. This
attack is possible because CIP increases the loss on original
training data. The adversary starts attack from the last fifth
rounds.

Table VII shows the attack accuracy as the α value increases.
The results are close to random guessing with α = 0.5. The
reason is we set the a small hyperparameter λ to limit the loss
increase on original training data, the loss increase is not as
significant as to divide members and non-members.

[RQ4] Take-away-optimization: It does not give an
adversary advantages for MI attacks for either actively
optimizing the target model (obtained from a victim client)
on target samples or active probing and optimizing t based
on probing results.

2) Knowledge-based Attacks: We describe four adaptive
attacks below, which are based on additional knowledge of
either the defense or the model.



Table IX
[RQ4-ADAPTIVE-KNOWLEDGE-2] ATTACK ACCURACY ON DIFFERENT

DATASETS WITH SHADOW t AND PARTIAL TRAINING DATA

Dataset % of known training samples
20% 40% 60% 80%

CIFAR-100 0.583 0.584 0.572 0.575
CIFAR-AUG 0.533 0.531 0.536 0.535
CH-MNIST 0.532 0.525 0.537 0.539
Purchase-50 0.528 0.519 0.517 0.524

[Knowledge-1] Public Seed + α + Shadow t. This adversary
knows the initial seed and α and then generates an adaptive t′

from shadow training data.That is, the adversary starts from a
public seed, which is the same as CIP adopts, optimizes a t′

from random shadow training dataset.
Table VIII shows the attack accuracy of an external attack

given α is 0.7 when we change the structural similarity index
measure (SSIM) [5] to calculate the similarity between the
attacker’s and the initial seeds. There are three things worth
noting here. First, when the SSIM between two seeds increases,
the attack accuracy increases as well. That means, when the
attacker knows the exact seed or is getting close to the exact
seed, the adaptive attack is more effective. Second, even if the
attacker knows the exact secret perturbation seed, the adaptive
attack accuracy is still much lower than the one of the state-
of-the-art MI attack. The reason is that the attacker does not
know the training data and the generated t and t′ still differ a
lot with the same seed.
[Knowledge-2] Shadow t with Partial Training Data. This
adversary knows part of the training data and generates a
perturbation t′ and a model with parameters θ from that part
of training data and random initial seed.

Table IX shows the accuracy of external adaptive attack upon
the training data that is unknown to the adversary. Interestingly,
the accuracy of the attack does not change much as the
percentage of training data that is known to the adversary.
The reason is that the training data does not provide more
information than what the adversary obtains from the target
model [29]. More importantly, knowing part of training data
does not give insights on other parts of training data that is
unknown.
[Knowledge-3] A substitute t′ from a malicious FL client
under an i.i.d. setting. This adversary is a malicious client
and tries to use its own perturbation t′ to launch a membership
inference attack against the target data that is supposed to use
perturbation t. We use the i.i.d. setting on the CIFAR-100
dataset as described in Section V-B (because t will be quite
different for non-i.i.d. settings) for the experiment.

Here are our results. The testing accuracy on target data
with substitute t′ is 0.695, which is similar to real t, 0.666,
and demonstrate the effectiveness of t′ and the trained model.
Then, the attack accuracy is 0.535 even though the malicious
client can achieve a good testing accuracy with t′. It is because
t′ is not trained with the original training data, which makes
outputs of members and non-members with t′ non-separable.
The reason can also be reflected in the training accuracies,
which are 0.991 for t and 0.722 for t′. That is, the accuracy

Table X
[RQ4-ADAPTIVE-KNOWLEDGE-4] INVERSE MEMBERSHIP INFERENCE

ATTACK ACCURACY ON DIFFERENT DATASET WITH DIFFERENT α

Dataset α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

CIFAR-100 0.159 0.328 0.442 0.483 0.489
CIFAR-AUG 0.328 0.394 0.490 0.494 0.498
CH-MNIST 0.414 0.451 0.474 0.491 0.495
Purchase-50 0.387 0.447 0.482 0.485 0.491

gap between training and testing accuracy—which leads to
membership inference attacks—is only 0.027 for t′ as opposed
to 0.325 for t. Note that the SSIM between t and t′ is also
large, which is 0.665 under an i.i.d. setting.
[Knowledge-4] Inverse membership inference attack. This
adversary learns about the mechanism of CIP, knowing that
we intentionally increase the loss of original training data, and
designs an adaptive attack that classifies data with abnormally
high loss as the member. This attack can be regarded as the
inverse version of external adversary Ob-MALT, which classify
the data with high loss as non-member and low loss as member.

Table X shows the attack accuracy, which is close to
randomly guessing. That is, this adaptive attack is clearly not
effective against CIP. We think the reason is that we choose a
small λm, i.e., 1e− 12, to adjust the weight of increasing loss,
which will not lead to a abnormally high loss value. Instead,
CIP will just make the model’s outputs of original samples
look like other non-members. It is worth noting that the attack
accuracy increases while the α increases. The reason is that
the larger α introduces more perturbation, which leads to a
higher loss on original training data than a smaller α while
training the target model.

[RQ4] Take-away-knowledge: It does not give the
adversary any attack advantages over privacy if they know
some parameters of the defense.

E. RQ5: Overhead

In this research question, we evaluate CIP in terms of the
number of model parameters and training epochs needed to
converge. Table XI shows both numbers of federate learning
with the number of client as five. First, the number of
parameters of CIP is a little higher (+0.87%) than the one of
conventional FL models without defense. Note that although
CIP adopts a dual channel, the backbone is shared with no
increase on the number of parameters. That is, the parameter
number increase comes from the concatenated dense layers as
shown in Figure 3.

Second, the number of epochs of CIP is half of the one of
conventional FL models. The reason is that CIP has two-step
optimizations with the perturbation and the model. We believe
that this two-step optimization will help the convergence.

[RQ5] Take-away: CIP introduces minimum overhead
(i.e., 0.87%) in terms of model size and actually reduces
the number of epochs to converge because of the two-step
optimization.



Table XI
[RQ5-OVERHEAD]THE NUMBER OF PARAMETERS AND THE NUMBER OF
EPOCHS TO CONVERGE OF CIP AND CONVENTIONAL MODELS WITHOUT

DEFENSE (# OF CLIENT EQUALS TO FIVE).

Model type ResNet DenseNet VGG Avgerage ∆

Params
No defense 23,792,612 14,765,988 7,140,004

+ 0.87%
CIP 23,997,412 14,817,188 7,242,404

Epochs
No defense 300 600 600

- 50.0%
CIP 150 300 300

VI. RELATED WORK

Machine learning is vulnerable to different privacy attacks in-
cluding model inversion [16], [17], membership inference [45],
property inference [7], [18], as well as model and hyperparam-
eter stealing [49], [52]. Our work studies the defense against
membership inference (MI) attacks. We describe related work
on MI defenses and attacks.

MI Attacks. We discuss MI attacks in this part. First, existing
MI attacks can be roughly categorized as either output or
parameter-based depending on their required information. An
output-based attack [23], [40], [41], [45], [55], [55], [57] uses
the target model’s output, e.g., from the last Softmax layer
of a neural network, to predict membership; as a comparison,
a parameter-based attack [29], [38] takes the target model’s
parameters as input so that it can compute not only the target
model’s output but also its gradient for a given data sample.
Both categories of attacks can be applied in the so-called
whitebox setting [29], [38], which assumes that the adversary
has full, whitebox access to the target model either published by
the owner for easy distribution or leaked in a cyber attack. Note
that MI attacks were also explored in other learning settings,
such as generative adversarial networks [21] and genome-based
study [22].

Defenses against MI attacks. Existing defenses fall into two
categories, training perturbation and output perturbation: (i)
Training perturbation defenses alter the training process to
make the target model secure against MI attacks. For instance,
regularization was proposed to regularize the training process of
the target model to reduce model overfitting and subsequently
mitigate MI attacks [10], [12], [30], [37], [45], [57].In particular,
Shokri et al. [45] proposed to use the standard `2-norm
regularization term in training. Adversarial regularization [37]
models an MI attack’s success as a regularization term and
adds it to the loss function when learning the target model.
Aside from regularization, differential privacy [14], [24],
[36], [44], [53] bounds the attacker’s capability in inferring
whether a data sample was used to train the target model.
(ii) Output perturbation defenses change the target model’s
output to become less informative about the input’s membership
status. For instance, MemGuard [26] adds a carefully crafted
perturbation to the target model’s output and turns it into an
adversarial example for the attacker’s classifier that is used to
infer membership.

Privacy-preserving FL with Secure Aggregation. Recent
researches have studied the combination of FL and secure
aggregation [8], [9], [19], [46] sometimes in combination
with homomorphic encryption [20], [60] to ensure privacy.
Bonawitz et al. [9] enables clients to encrypt their updates so
that the central parameter server can only access the sum of the
updates. Mohassel et al. [35] allows clients to distribute their
training data to two non-colluding servers. Then, the servers
train a global model on the encrypted data using multi-party
computation. However, secure aggregation only guarantees that
the aggregation process does not leak privacy. A client or
server can still perform membership inference attacks to the
aggregated global model. Moreover, homomorphic encryption
and secure aggregation are often of low efficiency [9] due to
heavy-weight encryption, while perturbation-based defenses
are relatively lightweight.

Federated learning and MI attacks. Federated learning [28],
[31], [50], [51], [56], [59] is a collaborative learning that
allows multiple clients to train a model without explicitly
sharing data with each other. Specifically, a centralized server
coordinates multiple clients to train and exchange local models
for a global one. However, FL is vulnerable to multiple privacy
attacks [15], [34], [39], [62]. Nasr et al. [38] show that
malicious clients or servers can launch MI attacks, both active
and passive ones, against federated learning models to cause
privacy violations. Recent work [43], [47], [58], [59] propose
personalized federated learning to let clients use a different local
model or learning strategy to address the accuracy decrease
caused by data heterogeneity.

VII. CONCLUSION

In conclusion, we propose a defense, called CIP, against
membership inference attacks and use a different perspective,
letting the clients in an FL system shift the local input
distribution in a utility-preserving way using a client-level
input perturbation. We demonstrate both theoretically and
empirically that CIP can defend against both state-of-the-
art and adaptive attackers (e.g., those who follows the same
procedure to generate an adaptive access credential to infer
membership). Furthermore, CIP maintains the benefits brought
by a collaborative learning like FL by introducing new classes
to other clients in a non-i.i.d. setting and improving local
model’s accuracy in an i.i.d. setting.
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