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ABSTRACT
Content security policy (CSP)—which has been standardized by
W3C and adopted by all major commercial browsers—is one of the
most promising approaches for defending against cross-site script-
ing (XSS) attacks. Although client-side adoption of CSP is suc-
cessful, server-side adoption is far behind the client side: according
to a large-scale survey, less than 0.002% of Alexa Top 1M websites
enabled CSP.

To facilitate the adoption of CSP, we propose CSPAutoGen to
enable CSP in real-time, without server modifications, and being
compatible with real-world websites. Specifically, CSPAutoGen
trains so-called templates for each domain, generates CSPs based
on the templates, rewrites incoming webpages on the fly to apply
those generated CSPs, and then serves those rewritten webpages
to client browsers. CSPAutoGen is designed to automatically en-
force the most secure and strict version of CSP without enabling
“unsafe-inline” and “unsafe-eval”, i.e., CSPAutoGen can handle all
the inline and dynamic scripts.

We have implemented a prototype of CSPAutoGen, and our eval-
uation shows that CSPAutoGen can correctly render all the Alexa
Top 50 websites. Moreover, we conduct extensive case studies on
five popular websites, indicating that CSPAutoGen can preserve the
behind-the-login functionalities, such as sending emails and post-
ing comments. Our security analysis shows that CSPAutoGen is
able to defend against all the tested real-world XSS attacks.

1. INTRODUCTION
Cross-site scripting (XSS) vulnerabilities—though being there

for more than ten years—are still one of the most commonly found
web application vulnerabilities in the wild. Towards this end, re-
searchers have proposed numerous defense mechanisms [12,14,17,
21, 30, 32, 40, 41] targeting various categories of XSS vulnerabili-
ties. Among these defenses, one widely-adopted approach is called
Content Security Policy (CSP) [41], which has been standardized
by W3C [1] and adopted by all major commercial browsers, such
as Google Chrome, Internet Explorer, Safari, and Firefox.
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Though client-side adoption has been successful, server-side adop-
tion of CSP proves more worrisome: according to an Internet-scale
survey [45] of 1M websites, at the time of the study, only 2% of top
100 Alexa websites enabled CSP, and 0.00086% of 900,000 least
popular sites did so. Such low adoption rate of CSP in modern web-
sites is because CSP1 requires server modifications. That is, all the
inline JavaScript and eval statements need to be removed from a
website without breaking its intended functionality, which brings
extensive overhead for website developers or administrators.

To facilitate server deployment, in related work, deDacota [12]
and AutoCSP [14] analyze server-side code using program analy-
sis, infer CSPs, and modify those code to enable the inferred CSPs.
Another related work, autoCSP2 [17], infers CSPs based on vio-
lation reports and enforces the inferred CSPs later on. However,
deDacota and AutoCSP—due to their white-box property—require
server modification. Additionally, both approaches are specific to
websites written in certain web languages. Another approach, au-
toCSP, does not support inline scripts with runtime information and
dynamic scripts, and thus websites with those scripts cannot work
properly. According to our manual analysis, 88% of Alexa Top 50
websites contain such script usages.

In this paper, we propose CSPAutoGen, a real-time, black-box
enforcement of CSP without any server modifications and being
compatible with real-world websites. The key insight is that al-
though web scripts may appear in different formats or change in
runtime, they are generated from uniform templates. Therefore,
CSPAutoGen can infer the templates behind web scripts and de-
couple web contents in a script from the script’s inherent structure.

Specifically, CSPAutoGen first groups scripts in webpages un-
der a domain, and infers script templates, defined as training phase.
Next, in the so-called rewriting phase, CSPAutoGen generates CSPs
based on the webpage and templates, and then modifies webpages
on the fly—which could be at a server gateway, an enterprise gate-
way or a client browser—to insert the generated CSPs and apply
them at client browsers. Lastly, a client-side library added in the
rewriting phase will detect additional scripts generated at client side
during runtime and execute these scripts that match the templates.
Below we discuss two important mechanisms used in CSPAutoGen:

1In this paper, unless specified, our definition of CSP refers to
the strictest CSP, i.e., the default one with no “unsafe-inline” and
“unsafe-eval” options enabled. Although CSP provides options like
“unsafe-inline” and “unsafe-eval” for compatibility, these options
are not safe and open doors for XSS attacks.
2Note that AutoCSP [14] and autoCSP [17] are two pieces of re-
lated work with the difference in their first letter capitalization.



• Template Mechanism. The proposed template—used to match
incoming scripts at the rewriting and runtime phase—is com-
posed of two parts: generalized Abstract Syntax Tree (gAST)
and a type system. The former captures the inherent structure of
scripts, e.g., for loop and if statement; the latter abstracts runtime
generated information, e.g., content-specific Uniform Resource
Locator (URL), to its corresponding type, such as URL type.

• Secure JavaScript Transformation. CSPAutoGen securely trans-
forms common usages of JavaScript, such as dynamic scripts and
inline scripts, to comply with the strictest CSP. Particularly, we
propose a novel technique called symbolic template to securely
execute dynamic scripts in eval or eval-like functions with
“unsafe-eval” disabled. CSPAutoGen disables “unsafe-inline” as
well: it imports pre-included inline scripts, i.e., these embedded
in a script tag, as external files, and monitors DOM tree changes
to re-import runtime-included inline scripts, i.e., these generated
by DOM operations.

To evaluate CSPAutoGen, we focus on the following metrics and
obtain corresponding results as follows:
• Robustness. Our evaluation on Alexa Top 50 websites shows

that the median matching rate of unknown scripts is 99.2%, and
templates can sustain high matching rate for at least 60 days.

• Correctness. Our evaluation on an open source framework shows
that the accuracy of type inference is 95.9%.

• Security. Our evaluation on six real-word vulnerable web appli-
cations shows that CSPAutoGen can protect all of them against
XSS attacks. Moreover, the evaluation on Alexa Top 50 websites
shows that the CSP policies automatically generated by CSPAu-
toGen are more secure than the ones generated by website them-
selves: none of them support both “unsafe-inline” and “unsafe-
eval”.

• Compatibility. Our evaluation on Alexa Top 50 websites shows
that all the 50 websites can be correctly displayed. In addition,
we extensively explore the behind-the-login functionalities—such
as sending emails and web search—of five popular websites:
they all work properly.

• Performance. The performance evaluation shows that the median
overhead of CSPAutoGen’s is as small as 9.1%.
The rest of the paper is organized as follows. Section 2 provides

an overview of Content Security Policy. Section 3 and Section 4
present CSPAutoGen’s deployment model, overall architecture and
design. Then in Section 5, we discuss the implementation details of
CSPAutoGen. The evaluation is discussed in Section 6, where we
evaluate the system’s template robustness, security, compatibility
and performance. Next, in Section 7, we discuss several related
topics and challenges. Related work is presented in Section 8 and
Section 9 concludes the paper.

2. BACKGROUND
Content Security Policy (CSP) [1, 41] is a declarative whitelist

mechanism to protect websites against XSS attacks. Specifically,
CSP allows website developers to make policies for each webpage
and specify which contents are allowed to load and execute on each
page. These policies are delivered to the client-side browser via
Content-Security-Policy HTTP response header or in a
meta element. When the client-side browser receives CSP poli-
cies, the browser, if it supports CSP, will enforce the received poli-
cies to protect users. Say, for example, a webpage protected by CSP
policies that only allow scripts from its own server are injected with
a snippet of malicious JavaScript via an XSS vulnerability. The ma-
licious scripts are automatically blocked because they come from
an origin that is unspecified in the CSP policies.

1 Content-Security-Policy: defaul-src ’self’;
2 image-src ’self’ *.yimg.com; object-src ’none’;
3 script-src ’self’ apis.google.com;

Code 1: An example of CSP policy.

Now let us introduce the details of CSP policies. A CSP policy is
consisted of a set of directives. Each directive is in the form of
directive-name and directive-value, where the former
indicates the type of resource and the latter specifies the allowed
source list for that resource type. Code 1 shows an example of CSP
policy. In this example, the browser is only allowed to load im-
ages (specified by image-src) from *.yimg.com and the page’s
current origin (specified by keyword ‘self’), and scripts (specified
by script-src) from aps.google.com and the current origin.
No plugins are allowed in this page (specified by object-src
and keyword ‘none’), and other types of resources (specified by
default-src) are only allowed to be from the current origin. In
this paper, we discuss how to use CSPAutoGen to infer and enforce
CSP policies for script type (i.e., script-src). CSPAutoGen
can be also conveniently extended to support security policies for
other resource types.

By default, CSP disables inline scripts and dynamic scripts, i.e.,
the function calls of eval and Function, as well as setTimeout
and setInterval if their first arguments are not callable [1].
For the purpose of backward compatibility, CSP allows develop-
ers to specify keywords unsafe-inline and unsafe-eval
in CSP policies: the former allows inline scripts, and the latter
enables dynamic scripts. However, though convenient, these two
keywords seriously mitigate the protection offered by CSP. For
example, inline scripts open doors for reflected XSS, while dy-
namic scripts lower the bar for DOM-based XSS attacks. One of
CSPAutoGen’s contributions is to enforce policies without setting
unsafe-inline or unsafe-eval, while still preserving web-
sites’ functionalities.

There are two major levels of CSP that are commonly seen in
mainstream browsers: Level 1, the mostly adopted version that pro-
vides the aforementioned functionalities, and Level 2 that introduce
a new nonce feature. Specifically, the nonce allows an inline
script if the script’s hash or token (i.e., a random token assigned to
each whitelisted inline script) is specified in the CSP policy. At the
time we write the paper, Internet Explorer and Microsoft Edge do
not support CSP Level 2. Our CSPAutoGen is compatible with both
levels of CSP, because we only use the basic CSP functionalities.

3. OVERVIEW
In this section, we start by describing the system architecture,

and then delve into three deployment models.

3.1 System Architecture
CSPAutoGen works in three phases: training, rewriting, and run-

time. In the training phase, CSPAutoGen takes a bunch of webpage
samples as a training set and generates templates. Then, in the
rewriting phase, CSPAutoGen parses incoming webpages, gener-
ates corresponding CSPs based on the templates and rewrites web-
pages to include CSPs. In addition, CSPAutoGen also inserts tem-
plates generated in training phase and a client-side JavaScript li-
brary to each webpage. Lastly, in the runtime phase at the client-
side, the injected CSPs are enforced by the browser, guaranteeing
that illegitimate scripts are not executed. The previously-injected
library and templates ensure the runtime-included scripts and dy-
namic scripts that match templates can be imported. Now, we in-
troduce these three phases in detail.
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Figure 2: CSPAutoGen Architecture in the Rewriting and Runtime Phase.

Training Phase. Figure 1 illustrates the architecture of CSPAuto-
Gen in the training phase. First, a training task is submitted to a
training manager with a URL list (step 1). The URL list can be
obtained by any of the following methods. The administrator spec-
ifies the URL list manually; a link spider crawls the target domain
for the URL list; or the training manager hooks the website test
cases and outputs a list of URLs. Then, these URLs are sent to a
rendering task generator (step 2), which creates webpage render-
ing tasks by specifying various cookies, such as login cookies, and
user-agents to maximize script coverage. These rendering tasks are
performed, i.e., webpages are rendered, by a headless browser clus-
ter (step 3). During rendering, all the relevant contents, including
inline scripts, dynamic scripts, and src attributes of script tags, are
sent to a template generator and a host whitelist generator (step 4).
If the template generator needs to render more URLs, these URLs
are sent to the rendering task generator (step 5) and steps 3–4 are
repeated. The generated templates and host whitelist are stored at a
database (step 6), where they can be conveniently updated through
a visual template portal (step 7).
Rewriting Phase. Figure 2 illustrates the rewriting and runtime
phases of CSPAutoGen. CSPAutoGen’s applier engine is placed
between server and client. During the rewriting phase, when re-
ceiving a webpage (step 1), CSPAutoGen extracts and sends in-
line scripts to CSPAutoGen JavaScript server (step 2), where the
scripts are matched against templates and those benign ones are
stored in a globally unique subdomain (trusted subdomain). The
stored scripts’ URLs are returned to CSPAutoGen’s applier engine
so they could be imported as external scripts (step 3). Then, the
applier engine fetches templates and host whitelist of the domain
for page rewriting (step 4). Next, the engine rewrites the webpage
to import those trusted inline scripts as external scripts, include this
domain’s templates and a client-side library to be used in the run-

time phase, and inject generated CSP policies (step 5). The gen-
erated CSP policies work in a strict mode–neither “unsafe-inline”
nor “unsafe-eval” is set. Moreover, those CSP policies only allow
scripts loaded from the host whitelist and the assigned trusted sub-
domain. After rewriting, the webpage will be forwarded to user’s
browser (step 6).
Runtime Phase. In runtime, browser’s CSP mechanism guarantees
only external scripts from hosts specified in CSP’s script-src
directive can be executed. CSPAutoGen uses its client-side library
inserted during the rewriting phase to handle both runtime-included
inline and dynamic scripts. For the former, once the client-side li-
brary detects DOM tree changes and inline scripts inserted, the li-
brary will match the scripts with the templates. If matched, those
scripts are sent to the website’s subdomain at CSPAutoGen JavaScript
server, where the scripts will be matched again and put into the
server if they pass the matching. Next, the URLs associated with
these scripts will be returned so that the client-side library can load
and execute them at the client side (step 7, 8). For dynamic scripts,
the JavaScript library synchronously detects any function calls to
eval or eval-like functions and then matches their parameters
against templates. If matched, the library evaluates those scripts by
instantiating corresponding symbolic templates (step 9).

3.2 Deployment Models
In this section, we describe three deployment models in detail,

and compare the pros and cons of each of them.
Server Deployment. CSPAutoGen can be deployed on a server to
help developers or site administrators automatically generate and
enforce CSPs. Such deployment can protect all the users of the
particular website over the Internet, and is applicable to any back-
end programming languages, such as PHP, Node.js, and Ruby on
Rails. In particular, at the training phase, the developer or admin-
istrator runs CSPAutoGen upon an internal or testing version of the
website to generate templates and corresponding CSPs for the web-
site. Later on, if she adds or changes scripts in the website, she can
submit the new scripts to CSPAutoGen through a pre-built tool and
update the stored templates. The advantage of server deployment
is that we can ensure the training set being clean.
Middlebox Deployment. CSPAutoGen can be deployed at, for ex-
ample, the gateway of enterprise networks of companies, schools,
and governments. Such deployment will protect all the clients be-
hind the middlebox, such as all the enterprise computers. The en-
terprise can train the templates themselves or fetch from trusted
third-party template providers. Similar to all other training based
approaches [11, 16, 44], CSPAutoGen requires that the training set
is clean and without injected scripts. We understand that it is gener-
ally understood to be a hard problem for training based approaches
to keep the training set clean [33, 43]. Here is how we avoid XSS
attacks in the training set of CSPAutoGen. To mitigate known XSS
attacks, all crawled webpages are tested via VirusTotal [8], where
the scripts will be detected by more than 60 popular anti-virus soft-
ware. In addition, we crawl webpages from a clean seed URL to
avoid reflected and DOM-based XSS attacks. We also create new
accounts on websites during crawling to avoid stored XSS attacks,
because new accounts are usually initialized with pre-stored clean
contents and have no pre-user interactions.
Client Deployment. CSPAutoGen can also be deployed at a client,
and implemented as either a browser extension or a client proxy.
Such deployment needs to fetch templates from a trusted third-
party that generates CSPAutoGen templates. Similar to middlebox
deployment, the training also needs to be performed in a clean en-
vironment with no injected scripts.



1 CNN.autoPlayVideoExist =
2 (CNN.autoPlayVideoExist === true) ? true:false;
3 var configObj = {
4 thumb: ’none’,
5 video: ’politics/...zard-sott-origwx.cnn’,
6 ...
7 },autoStartVideo = false,callbackObj,
8 currentVideoCollection = [{
9 "videoCMSUrl": "/nicola...wx.cnn/index.xml",

10 "videoId": "politics/.../ott-origwx.cnn",
11 "videoUrl": "/videos/...uk-election-2015/"
12 }, ... ];
13 configObj.autostart = autoStartVideo;
14 ...
15 if (carousel
16 && currentVideoCollectionContainsId(videoId)){...}

Code 2: A snippet of scripts from one of CNN’s news webpages (some
codes are omitted because of page limits). Values of variables configObj
and currentVideoCollection depend on the topic of current webpage so
this script is unique and cannot be found in other webpages. However,
if we generalize this script by replacing these two variable values with
“CSP_Object” and “CSP_Array”, the generalized scripts exist in most of
CNN’s news pages.

4. DESIGN
In this section, we will discuss the design of CSPAutoGen. In-

stead of introducing CSPAutoGen in three phases, we will present
how CSPAutoGen process different categories of scripts—such as
inline, dynamic, and runtime-included—because these scripts are
the portals of attackers to launch XSS attacks. Now, let us first
define these script modifiers:
• Inline vs. External. The modifier inline refers to scripts that

are embedded directly as part of HTML, as opposed to external
scripts that are imported by the src attribute of a script tag.

• Dynamic vs. Static. The modifier dynamic refers to scripts that
are generated during client-side execution through an eval or
eval-like function, as opposed to static scripts that are provided
by the server directly.

• Runtime-included vs. Pre-included. We use the modifier runtime-
included to refer to the scripts that are included during client-side
execution, such as invoking createElement function to cre-
ate a script tag, as opposed to pre-included that are in the
HTML before rendering.
Some of the modifiers can be used together to describe scripts.

For example, runtime-included inline scripts mean that scripts in
a script tag are inline, and generated through JavaScript opera-
tions. In this paper, CSPAutoGen needs to process four categories:
pre-included inline scripts, runtime-included inline scripts, external
scripts, and dynamic scripts.

In the rest of this section, we first discuss the template mech-
anism, gAST and its type system, in Section 4.1. Then, in Sec-
tion 4.2, we present how to apply templates upon each category of
scripts, generate corresponding CSPs, and enforce generated CSPs.
Last, we will briefly discuss CSPAutoGen’s important subsidiary
components in Section 4.3.

4.1 Templates Mechanism
Templates are the foundation of CSPAutoGen of processing all

categories of scripts and generating CSPs. They are created by
the template generator (Figure 1) in the training phase, stored in
the template database, and used to match with inline scripts (by
CSPAutoGen applier engine in Figure 2) in the rewriting phase and
dynamic/runtime-included scripts in the runtime phase. In this sub-
section, we first discuss the principals of designing templates, and
then present how our templates—gAST and its type system—work.
Design Principles. When designing templates for CSPAutoGen,
we have the following three principles:

• High benign script matching rate. The templates should match
benign scripts not present in the training phase. Because many
scripts carry runtime information, exact string matching, such as
comparing hash values, will not satisfy this principle. For exam-
ple, Code 2, a snippet of scripts from CNN, shows that the values
of configObj and currentVideoCollection are gen-
erated by the server based on the webpage topic. Our templates
should be general enough to match these unseen scripts.

• Prevention of injected scripts. The templates should not match
injected, malicious scripts. There is a tradeoff between the first
and this principle: the templates should be general to match un-
seen website scripts, but not too general to match injected scripts.

• High performance. Because CSPAutoGen needs to enforce CSP
in real-time, the templates should be matched with scripts as fast
as possible. That is, string-similarity algorithms with high time
complexity, such as Levenshtein algorithm, are not suitable here.

Template Overview. Guided by these principles, we propose a
novel template based on Abstract Syntax Tree (AST) and a type
system. First, as observed in real-world websites, most scripts share
exactly the same logic structure but different data values (such as
Code 2). Therefore, we propose a generalization of AST, called
generalized AST (gAST), to group together such scripts. Compared
with AST, the data nodes of gAST are generalized to their type
information (e.g., array and string) with no actual values so that
they can cover unseen scripts in the training phase.

Second, to prevent script injection, we propose a conservative
type inference system, which limits the number of possibly matched
data. For example, if a data node only contains a single value in the
training phase, CSPAutoGen will assign a CONST type to the node;
similarly, if the node contains a limited number of values, CSPAu-
toGen will assign an ENUM type to the node. Such conservative
inference greatly restricts the ability of an attacker to bypass the
templates and inject their own scripts.

Third, the proposed template matching has O(n) time complex-
ity against an incoming script where n is the size of the AST of
the script. The overall matching has three steps: generating gAST
for the script, matching the generated gAST with templates, and
matching the type information in the script against the one in tem-
plates. Our evaluation results in Section 6.5 also confirm the effi-
ciency of the matching mechanism.

In the rest of this subsection, we will first show how to build
gAST together with the conservative type information, and then
discuss how to match scripts against gAST.
Building gAST. The building of gAST is as follows. CSPAutoGen
first generates the script’s standard AST and then traverses the AST
to generate gAST. Each gAST node has two attributes: tag used for
tree comparing, and value used for type inference and comparison.
Algorithm 1 illustrates how to recursively build gAST from AST.

For complex data node, the gAST node’s value attribute is set
to the corresponding AST node’s so called non-nested object value
(Line 18), a generalized data structure used for type inference and
comparison. Code 3 illustrates an example of converting an array
to a non-nested object. Each array or object is converted to a non-
nested format composed of a set of key-value pairs, where each key
obeys the key assignment rule and each value is a list of atomic data
values or gAST. The conversion algorithm recursively processes
data values from innermost arrays or objects: atomic value is as-
signed a key directly, while expression is converted to gAST and
then assigned a key. Here is the key assignment rule:

For array elements, all boolean or number values are assigned
with a key as “CSP_boolean” or “CSP_number” respectively; strings
are assigned with key of “CSP_string_level”, where “level” refers
to the item’s nested level. For object, if a value has multiple keys



Algorithm 1 The Algorithm of Building gAST
Input: AST Node: node
gASTNode buildGAST(node):
1: gnode = createGASTNode()
2: switch (getNodeClassType(node))
3: case StructureNode(e.g.,DoWhile, If):
4: case OperatorNode(e.g., Assign,BinOp):
5: gnode.tag = getNodeClassName(node)(e.g., Assign)
6: gnode.value = null
7: break
8: case IdentifierNode(i.e., Identifier):
9: gnode.tag = getNodeV alue(node)(e.g., CNN, configObj)
10: gnode.value = null
11: return gnode
12: case AtomicDataNode(e.g., Number, String):
13: gnode.tag = getNodeClassName(node)(e.g., String)
14: gnode.value = getNodeV alue(node)(e.g., “...gwx.cnn′′)
15: return gnode
16: case ComplexDataNode(i.e., Array,Object):
17: gnode.tag = getNodeClassName(node)(e.g., Array)
18: gnode.value = getNonNestedObject(node)
19: return gnode
20: end switch
21: for child in node.children do
22: gnode.appendChild(buildGAST (child))
23: end for
24: return gnode

1 var org_array =
2 [’str1’, [4,’str2’], {k1:’str3’, k2:{k3:’str4’}},
3 {k1:’str5’}, 2, 3, fun()+1];
4 //org_array’s non_nested_obj
5 var non_nested_obj =
6 {CSP_expression:[gAST], CSP_string_lev1:[’str1’],
7 CSP_string_lev2:[’str2’], CSP_number:[2,3,4],
8 k1:[’str3’,’str5’], k3:[’str4’] };

Code 3: An example of converting an array variable org_array to non-
nested object variable non_nested_obj.

(nested array/object), keep the closet one that are not generated by
CSPAutoGen (i.e., starting with “CSP_”); otherwise, keep its orig-
inal key. All expressions in array and object will be assigned with
key of CSP_expression.
Type System. As mentioned, CSPAutoGen infers the type infor-
mation of each data node (i.e., array, boolean, number, object and
string type) in gAST. In particular, all scripts with the same gAST
are grouped together and corresponding nodes’ values are put to-
gether as training samples. Based on these samples, CSPAutoGen
infers type information for each generalized data node. For an
atomic data node (i.e., boolean, number and string), each node is
assigned a single type; for a complex data node (i.e., array and
object), each key-value pair of the non-nested object has an inde-
pendent type.

To accurately and conservatively infer type information, CSPAu-
toGen requires that the number of samples for each inferred type
is larger than a threshold (10 by default in our implementation).
If this condition does not meet, CSPAutoGen will send URLs of
the webpages containing relevant scripts to the rendering task gen-
erator (Figure 1), which then starts rendering tasks with various
client-side configurations to obtain more samples.

In our type system, we define the following six types:

• CONST. If all the samples are with the same value, CSPAutoGen
infers a CONST type. When matched with a CONST type, the
target value should be exactly the same as the const value.

• ENUM. If the sample set size is larger than a threshold (120
by default), and the number of different values is significantly
smaller (5 or less than 5 by default), CSPAutoGen infers an ENUM
type. When matched with an ENUM type, the target value should
be an element of the type’s value set.

• NUMBER. If all the samples can be parsed as numbers, CSPAu-
toGen infers a NUMBER type. When matched with a NUMBER
type, the target value should be a number.

• URL. If all the samples can be parsed as URLs, CSPAutoGen
infers a URL type, which contains a subtype—domain name—
with a set of domains appearing in the samples. When matched
with a URL type, the target value should be parsed as a URL
and the domain in the URL should match the domain name as
an ENUM type. Note that a URL’s parameters might contain an-
other URL for redirection and that URL also needs to be checked.

• GAST. The value of an array or object can be an expression.
In the step of converting array and object to non-nested objects,
expressions are extracted and put under key of CSP_expression.
CSPAutoGen infers a GAST type when the key in a non-nested
object is CSP_expression. When matched with a GAST type, the
target value should be an expression and the gAST of the target
value will be matched with the gASTs stored in the type.

• REGEXP. If CSPAutoGen cannot infer any of the aforementioned
five types, CSPAutoGen will infer a REGEXP type based on dif-
ferent attributes. At the same time, CSPAutoGen also allows
specifying a regular expression manually. Towards this end, we
have identified eight possible attributes of generating a regular
expression: (1) length (min and max), (2) character (is_alphabetic,
is_numeric or special character set), and (3) common strings (a
prefix, an appendix, or a domain name in the middle).
Note that GAST is a complex type whose restrictiveness de-

pends on the rest five basic types. Among these five basic types,
except the REGEXP type, all the rest four types are so conservative
that the number of possible matched data in real time is very small
and most of the matched data is seen in the training phase. Only
the REGEXP type is potentially dangerous if it contains charac-
ters other than letter or number because an attacker may have more
flexibility to inject suspicious contents. However, though theoret-
ically possible, we believe that such attack venue is impractical,
because it requires the collaboration of website developers to im-
plement a functionality wanted by the attacker. Moreover, because
the number of such flexible types is small, one could utilize our
visual template portal to manually review regular expressions gen-
erated by CSPAutoGen to ensure security. A detailed evaluation of
the amount of manual work could be found in Section 6.4.
Template Matching. There are two steps in matching an incoming
script (i.e., the target script) with the templates of its domain: gAST
matching and type matching. First, CSPAutoGen first generates tar-
get script’s gAST and then compares the gAST with the ones in the
templates. When comparing two gASTs, CSPAutoGen only com-
pares each node’s tag attribute because tag is used to describe the
script’s structure. To further speed up the matching, CSPAutoGen
pre-stores a string consisted of a sequence of tags—which are the
traversing results of each gAST in the templates—and the string’s
hash value (called gAST hash). When matching the target script,
CSPAutoGen only compares the gAST hash of the target script and
the ones of the templates.

Second, if the gAST matching succeeds, CSPAutoGen extracts
the template’s type set and compares all the data nodes of the target
script with their corresponding types in the templates. For each
data node, the matching rule depends on the data node type:
• Atomic data node. Directly match the value extracted from target

script against the corresponding type associated with the node.
• Complex data node. To match a complex data node, CSPAuto-

Gen first converts the value of the target script, either an array or
an object, to a non-nested object, and then compares it against
the corresponding object in the templates. Specifically, for each
key-value pair in the target non-nested object, CSPAutoGen first



checks whether all the keys can be found in templates. If not, the
matching fails; otherwise, for each value in the target non-nested
object, CSPAutoGen compares it against the corresponding type
specified in templates. CSPAutoGen will determine the complex
node a match only when all the value match.
In sum, a script matches templates only when (1) the gAST

matches, and (2) the types of all the data nodes match.

4.2 Processing Scripts based on Templates
In this section, we will discuss in details how CSPAutoGen pro-

cesses four categories of scripts, i.e., pre-included inline scripts,
runtime-included inline scripts, external scripts (both pre- and runtime-
included) and dynamic scripts, to ensure only these matching tem-
plates can be executed. CSPAutoGen stores pre- and runtime-included
inline scripts at its JavaScript server (Figure 2) and specifies the
server in CSP’s script-src directive. For inline scripts from
different domains, the sever provides corresponding globally unique
subdomains, i.e., hashValue.cspautogen.com, where hashV alue is
the hash value of the domain that inline scripts come from. We refer
to this trusted subdomain as the domain’s CSP trusted host.
Pre-included Inline Scripts. Pre-included inline scripts—which
are processed during rewriting phase—can be further divided into
three sub-categories:
• These embedded in script nodes (e.g., <script>alert(1);</script>).

CSPAutoGen extracts scripts and sends them to CSPAutoGen
JavaScript server, where the scripts are matched against tem-
plates. If match, the scripts are stored at the server with a unique
URL from the domain’s CSP trusted host. Then, CSPAu-
toGen rewrites the script tag by removing inline contents and
adding a src attribute pointing to the URL.

• Inline event handlers embedded in tag attributes (e.g., <div oncli
ck=“alert(1);”></div>). The process is similar to these em-
bedded in script nodes. The difference is that in addition to the
original inline scripts, CSPAutoGen adds a function wrapping the
handler, and further adds this function through addEventListener
API when onDOMContentLoaded event is fired.

• JavaScript URL scheme (e.g., <a href = “javascript: alert(1);”
></a>). Again, other steps are similar to these embedded in
script nodes. The difference is that CSPAutoGen adds a function
wrapping the original scripts in the JavaScript URL scheme, and
registers an onClick event for the original tag.

Dynamic Scripts (Eval/Eval-like Function Execution). To pre-
vent users from DOM-based XSS, CSPAutoGen does not set the
keyword “unsafe-eval” in CSP header. That is, Function and
eval cannot be called to evaluate a string as JavaScript code, and
functions setTimeout and setInterval can only be called
when the first argument is a callable [1]. We refer to these four
functions as eval and eval-like functions. Though unsafe, these
functions are commonly used in modern websites, and it incurs se-
rious compatibility issues if directly disabling them.

To execute dynamic scripts, we need to answer two questions:
(1) which strings in eval or eval-like functions are allowed to
execute, and (2) how to execute them without using eval or eval-
like functions. The answer for the first question is simple—parsing
the string into a gAST, and matching the gAST and values against
templates. The details have already been discussed in the previous
subsection. Then, let us answer the second question. To execute
such strings, we propose a symbolic template mechanism to syn-
chronously execute these allowed strings as JavaScript codes when
eval or eval-like functions are disabled.

A symbolic template is a function generated from corresponding
gAST by converting the data nodes in gAST to symbolic variables.
Specifically, to generate a symbolic template, CSPAutoGen first

1 //Target Script
2 eval("AMPTManager.pageSlotsObj[’ad_ns_btf_01’]
3 = googletag.defineSlot(’/866347/CNN/world/leaf’,
4 [[1,2],[150,90],[300,50],[300,100]],
5 ’ad_ns_btf_01’).
6 addService(googletag.pubads()).
7 setTargeting(’pos’,[’ns_btf_01’]);");
8 //gAST for the Target Script
9 AMPTManager.pageSlotsObj[CSP_String]

10 = googletag.defineSlot(CSP_String,
11 CSP_Array, CSP_String).
12 addService(googletag.pubads()).
13 setTargeting(CSP_String, CSP_Array);
14 //Symbolic Template for the gAST
15 symTemplates[hash] = function(
16 CSP_S1,CSP_S2,CSP_A3,CSP_S4,CSP_S5,CSP_A6){
17 AMPTManager.pageSlotsObj[CSP_S1] =
18 googletag.defineSlot(CSP_S2,
19 resolveASTNodeVal(CSP_A3,hash),CSP_S4).
20 addService(googletag.pubads()).
21 setTargeting(CSP_S5,
22 resolveASTNodeVal(CSP_A6,hash));};

Code 4: Example of dynamic script. During runtime, when the target
script is called (Line 2–7), our client-side JavaScript library will capture
its parameter and match it against the templates. If match, the library
will instantiate and call the corresponding symbolic template (Line 15–22),
which is a JavaScript function corresponding to a gAST (Line 9–13). In
the symbolic template, function resolveASTNodeVal(...) will resolve each
complex data node (i.e., array and object) with the corresponding node’s
AST subtree during execution.

creates a function with all parameters corresponding to each gen-
eralized data node. Then it substitutes all the atomic data nodes in
gAST with symbolic variables, and all complex data nodes with the
results of runtime instantiation function (resolveASTNodeV al)
calls. After that, it converts the gAST back to a script with sym-
bols and sets it as the function’s body. Code 4 shows an example of
the symbolic template (Line 15–22) and corresponding gAST (Line
9–13) for the example at Line 2–7. During training phase, CSPAu-
toGen generates one symbolic template for each gAST, ships them
with all other templates to the client. In runtime phase, these sym-
bolic variables will be instantiated via parameters generated from
the arguments of the eval or eval-like functions.

Next, we will discuss how to instantiate and execute a sym-
bolic template. In the rewriting phase, CSPAutoGen rewrites an
incoming webpage by inserting CSPAutoGen client-side library as
a trusted external script in the beginning of the rewritten webpage.

Then, in the runtime phase, the client-side library overwrites the
original eval or eval-like functions defined by the browser, i.e.,
eval or eval-like functions are redefined as a normal function
in CSPAutoGen . Such overwritten eval or eval-like functions
are allowed by CSP. These overwritten functions serve as three pur-
poses: (1) checking whether the string to execute matches one tem-
plate, (2) extracting data node values from the argument string, and
(3) instantiating the symbolic template. Code 5 shows the pseu-
docode of overwritten eval function, which we will use as exam-
ple to discuss. All the other eval-like functions can be handled in
a similar way.

First, in the beginning of the overwritten eval function, the
argument string will be matched against the domain’s templates.
If match, the overwritten function finds the corresponding sym-
bolic template and continues the following two steps; otherwise,
the string will not be executed (Line 3-8).

Second, the overwritten eval function parses the string into an
AST, from which it will extract data nodes and store them into an
array as arguments for symbolic template (Line 10). If the data
node is atomic type (i.e., boolean, number and string), the actual
value of each data node (e.g., 200 and “a string”) is extracted; if the



1 window.eval = function(scriptStr){
2 //match target string against templates.
3 var template = findTemplate(scriptStr);
4 if (!template) return ;
5 //if match, find the symbolic template.
6 var hash = getTemplateHash(template);
7 var symTemplate = symTemplates[hash];
8 if (!symTemplate) return ;
9 //extract args & run symbolic template.

10 var args = extractArgs(genAST(scriptStr));
11 symTemplate.apply(this, args); };

Code 5: Pseudocode of overwritten eval function. In the overwritten
eval function, the function first matches the target script against templates
(Line 3–4). Only when a match is found, will the overwritten eval function
extract the arguments (i.e., the data nodes) from the target script’s AST node
(Line 10) and then instantiate the corresponding symbolic templates with
the arguments (Line 11). Symbolic templates are determined based on their
gAST’s tree structure hash (Line 6-8).

data node is complex type (i.e., array and object), the data node’s
subtree will be extracted and stored, because the value should be
resolved during instantiating the symbolic template to preserve the
order of expressions that might appear on complex data node. Af-
ter that, the extracted arguments array will be fed into symbolic
template to evaluate the string (Line 11).

Third, in symbolic template, all the array and object node ar-
guments will be “wrapped” by function resolveASTNodeV al,
which accepts AST data node and parses it into JavaScript object
(shown in Algorithm 2). In resolveASTNodeV al , for a boolean,
number or string node, CSPAutoGen creates a new Boolean, Num-
ber or String object (Line 2-4 of Algorithm 2). For an array (Line
5–10 of Algorithm 2) or object node (Line 11–17 of Algorithm 2),
CSPAutoGen iterates each member in the array or object and re-
cursively resolves each member. For an Expression node, CSPAu-
toGen finds the symbolic template corresponding to the expres-
sion and then invokes the symbolic template with extracted argu-
ments. Note that such template must exist if the script passes tem-
plate matching, and these expression symbolic templates are de-
fined in their parent symbolic templates (i.e., the function body
where resolveASTNodeV al is called) to preserve scope chain.
(Line 20–23 of Algorithm 2). Identifier node is handled similarly:
for each variable that might appear in complex nodes of a tem-
plate, a one-line function is defined in the corresponding symbolic
template to return the variable’s value, and resolveASTNodeV al
will call that function to resolve identifier node value (Line 18–19).

To preserve the scripts’ behavior, several design details need to
be further discussed.

• Scope Chain. JavaScript functions are running in the scope
chain where the functions are defined [15]. In order to preserve
original scripts’ scope chain, we define overwritten eval and
eval-like functions on the global window object, where their
original counterparts are defined. The only exception is eval,
because eval can be used as both a function and a keyword.
If eval is used as a function (e.g., window.eval(...) or var e
= eval; e(...) ), our overwritten eval still preserves its scope
chain (i.e., running on global window object). Otherwise, if
eval is used as a keyword (i.e., eval(...)), the argument string
of eval is running in the current scope chain. To preserve the
scope chain for the keyword eval, during symbolic template
generation, CSPAutoGen searches the keyword eval, rewrites
the script by inserting the symbolic template corresponding to
the eval argument before the keyword eval, and then changes
the keyword eval invocation to the symbolic template function
call. Note that if eval is used as a keyword, it cannot be obfus-
cated, which means that we can find all of such usages.

Algorithm 2 The Algorithm of Instantiating Symbolic Node
Input: AST Node: node
Input: String: callerHash
JavaScriptObject resolveASTNodeVal(node, callerHash):
1: switch (getNodeClassName(node))
2: case Boolean: return Boolean(getNodeV alue(node))
3: case Number: return Number(getNodeV alue(node))
4: case String: return String(getNodeV alue(node))
5: case Array:
6: ret = new Array()
7: for item in extractV als(node) do
8: ret.push(resolveASTNodeV al(item, callerHash))
9: end for
10: return ret
11: case Object:
12: ret = new Object()
13: keys, vals = extractKeysV als(node)
14: for i in keys do
15: ret[keys[i]] = resolveASTNodeV al(vals[i], callerHash)
16: end for
17: return ret
18: case Identifier:
19: return varResolveMethods[callerHash][node.name]()
20: default: (i.e., Expression)
21: hash = getTemplateHash(getNodeTemplate(node))
22: args = extractArgs(node)
23: return exprSymTemp[callerHash][hash].apply(this, args)
24: end switch

• Argument Instantiation Order. For array and object data nodes,
their elements might contain expressions and identifiers, whose
values are not definitive until being resolved. Therefore, the ar-
gument instantiation order matters. CSPAutoGen adopts runtime
instantiation rather than pre-instantiation for array and object
data nodes, ensuring the instantiation sequence not changed.

Runtime-included Inline Script. Runtime-included inline scripts
are generated from other scripts at client side. Those scripts are
composed of two categories: asynchronous and synchronous.

Asynchronous runtime-included inline scripts can be imported in
three ways: (1) adding/changing a script tag with inline script, (2)
adding/changing an inline event handler, and (3) adding/changing
an attribute with JavaScript URL scheme.

To allow such inline scripts, during page rewriting, the client-
side JavaScript library of CSPAutoGen monitors DOM tree changes
by a MutationObserver instance and then processes runtime-included
scripts. Let us use the creation of a script tag with inline scripts
in runtime as an example. If the JavaScript library detects added
or modified inline scripts, the library tries to match them against
the templates of the domain. If no match, the library does noth-
ing as CSP has already disabled the scripts; if match, the library
sends these scripts to the CSPAutoGen JavaScript server. At the
server, CSPAutoGen will match the scripts again. If match, the
server stores the scripts, and returns corresponding URLs (part of
the domain’s CSP trusted host) to the library. We check scripts at
both client and server sides for both efficiency and security: only
matched scripts will be sent to server by our client-side library
and the server can detect and reject those malicious scripts sent
by attackers to bypass our system. After receiving a script’s URL,
CSPAutoGen changes the script tag by setting the src attribute as
the received URL. The whole process is working asynchronously
to minimize the overhead. For the other two categories, i.e., inline
event handlers and inline JavaScript URL scheme, the entire pro-
cess only differs after CSPAutoGen receives the script’s URL from
the CSPAutoGen JavaScript server. The details will be the same as
processing pre-included inline event handlers, thus being skipped.

Synchronous, runtime-included, inline scripts are executed im-
mediately, such as these loaded through the document.write API.
For such scripts, CSPAutoGen parses the HTML code, which is



the first parameter of document.write, through an innerHTML at-
tribute, extracts scripts from script tags, matches the script with
gAST, and executes the script through symbolic templates. The
matching and execution are exactly the same as eval or eval-like
functions, and will be skipped here.
External Scripts. External scripts are imported through the src
attribute of script tag (e.g., <script src=“..”></script>). CSPAu-
toGen handles these scripts by specifying the allowed hosts in CSP’s
script-src directive. These allowed hosts, generated by the
host whitelist generator in the training phase, are part of the tem-
plates. During the rewriting phase, CSPAutoGen fetches the al-
lowed script host list from the template database and adds them to
the CSP. Note that as specified by CSP, external scripts can be im-
ported during runtime, and runtime-included external scripts have
to be part of the allowed host list. Therefore, CSPAutoGen’s client-
side JavaScript library does not need to take additional actions for
runtime-included external scripts.

4.3 Subsidiary Components
We briefly introduce three CSPAutoGen’s subsidiary components

here. They are not indispensable, but can either improve template
robustness or alleviate deployment burden.
Visual Template Portal. Although CSPAutoGen can generate tem-
plates without any human interventions, we have designed an inter-
face, visual template portal, for template providers or website de-
velopers to generate templates with higher robustness and accuracy.
Specifically, one—the template provider or website developer—
can modify gASTs, the associated type information and template
patches, discussed in the following, for any domain. To facilitate
this process, visual template portal will show each template as well
as those associated training scripts visually so user can improve
templates without fully understanding each script.
Violation Script Panel. For non-server deployment, CSPAutoGen
provides a violation script panel to end users so they can whitelist
their trusted scripts. The panel is essentially a popup window that
can be opened by an optional button inserted via CSPAutoGen’s
client-side library. Such panel lists all the blocked scripts of cur-
rent domain, specifies reason for each violation (i.e., gAST does not
exist and type does not match) and related information. End user
can whitelist any of those scripts or add new trusted scripts. Each
client has her own whitelist, thus, CSPAutoGen needs to authenti-
cate clients. The authentication is via a unique identifier cookie set
in the client browser.
Violation Report Mechanism. Violation reports can help adminis-
trators understand if there are attacks happening or whether the de-
ployed templates are outdated. CSP’s native violation report mech-
anism is not applicable to CSPAutoGen, because violation cases
might not trigger CSP violations (e.g., those non-matched scripts
in rewriting phase) and scripts that trigger CSP native violations
might get executed (e.g., the runtime-included inline scripts that
match templates). Therefore, we propose a new violation report
mechanism that will send accurate violation report to administra-
tors. Those reports include violated URLs and scripts, under user
agreements.

When a website’s JavaScripts are updated, CSPAutoGen will cap-
ture the violated scripts via violation report mechanism and group
them based on their gASTs. If one group’s script number achieves a
threshold, CSPAutoGen can automatically generate template patches
and report the patches to the administrator. Then, the administrator
can utilize visual template portal to visually review these patches
as well as their corresponding templates, and securely apply the
patches to existing templates. Such process is not often: our eval-

uation shows that people may only need to do it every other month
(Section 6.2.2).

5. IMPLEMENTATION
We implement CSPAutoGen in 3,000 lines of Python code and

6,500 lines of JavaScript code. In the training phase, we customize
PhantomJS as a headless browser to render URLs and extract scripts
as well as trusted hosts. These headless browsers are driven and
managed by our rendering task generator, which is written in Python
to dynamically configure PhantomJS instances. The other two com-
ponents, the template generator and the host whitelist generator, are
written in Node.js. We use Esprima library [3], a high performance,
standard-compliant JavaScript parser written in JavaScript, to parse
codes and generate ASTs. The generated gASTs will be stored in
our template database implemented by MongoDB.

In the rewriting phase, CSPAutoGen is deployed on mitmproxy,
an SSL-capable man-in-the-middle proxy written in Python. It pro-
vides a scripting API to external Python scripts, defined as inline
scripts (which is different from inline scripts in JavaScript). Such
inline scripts can intercept HTTP/HTTPS requests and responses
as well as modify them on the fly. Our CSPAutoGen engine is
implemented as mitmproxy’s inline scripts, and utilizes Python’s
BeautifulSoup package to parse and rewrite DOM trees. In order to
be robust to the broken pages that can still be rendered by browser,
we choose html5lib parser [7] as parsing engine, which is lenient
and parses HTML the same way a web browser does.

In the runtime phase, the client-side JavaScript library handles
runtime-included and dynamic scripts. The library is written in
JavaScript, and uses Esprima library to generate script AST.

All the servers, including the CSPAutoGen JavaScript server, the
violation report server and the whitelist server, are implemented in
Node.js. At server side, the scripts need to be matched against tem-
plates. Those codes are written in Node.js with Esprima library.

6. EVALUATION
In this section, we evaluate CSPAutoGen to answer these six

questions: (1) How do we train CSPAutoGen? (2) Are the gen-
erated templates robust enough to match most of the unseen but be-
nign scripts, and stable enough to last for a relatively long period?
(3) Are the generated templates correct? (4) Can CSPAutoGen pro-
tect vulnerable websites against real-world XSS attacks? (5) How
much overhead does CSPAutoGen incur? (6) Is CSPAutoGen com-
patible with real-world websites?

6.1 Training Datasets
In this section, we present how to train CSPAutoGen based on

different scenarios, i.e., whether we deploy CSPAutoGen at the
middlebox or the server.

6.1.1 Training based on Alexa Websites
To evaluate CSPAutoGen over real-world websites, we obtain

Alexa Top 50 websites as our dataset. For each website, we crawl
2,500 different webpages and split them into a training set with
2,000 webpages (training webpages) and a testing set with the rest
500 webpages (testing webpages). To maximize the code cover-
age, we use PhantomJS [34], a popular headless browser, to ren-
der each webpage ten times with five user-agents (i.e., Android,
Chrome, Firefox, IE and iPhone) and two cookie settings (i.e., a
clean cookie jar and a cookie jar initiated with login credential) re-
spectively. Moreover, to make sure that the training set is clean, the
crawling starts from a clean URL, and all crawled scripts are tested
by VirusTotal [8] under more than 60 antivirus software preventing
known XSS payload.



Table 1: Template Robustness over Time for Alexa Websites.
Domain # of gAST # of Scripts Matching Rate # of Scripts Matching Rate # of Scripts Matching Rate

(2016/01/01) (2016/02/01) (2016/02/01) (2016/03/01) (2016/03/01) (2016/04/01) (2016/04/01)
Amazon 596 149,592 99.62% 157,281 99.13% 373,635 98.39%
CNN 259 46,939 98.72% 45,559 98.50% 48,853 98.30%
Facebook 53 17,830 99.47% 15,419 97.90% 10,995 95.98%
Google 857 12,082 97.89% 14,501 94.13% 16,385 87.14%
Reddit 49 14,487 97.47% 12,888 97.01% 13,622 89.78%
Yahoo 295 8,834 99.30% 8,676 99.05% 7,264 94.01%

Table 2: Template Robustness over Time for Web Frameworks.
Application First Version (V1) # of gAST Second Version (V2) # of gAST Third Version (V3) V3 V1 V2

& Release Date from V1 & Release Date from V2 & Release Date LOC Matching Rate Matching Rate
Concrete5 5.7.0 (09/12/2014) 3 5.7.4 (04/17/2015) 8 5.7.5 (08/11/2015) 92,211 67.7% 85.6%
Drupal 7.2.2 (04/03/2013) 5 7.3.2 (10/15/2014) 5 7.4.3 (02/24/2016) 53,000 100% 100%
Joomla 3.4.0 (02/24/2015) 5 3.4.2 (06/30/2015) 5 3.4.3 (07/02/2015) 447,763 100% 100%
MyBB 1.8.0 09/01/2014) 25 1.8.4 (02/15/2015) 26 1.8.5 (05/27/2015) 329,633 99.6% 100%
SilverStripe 3.1.0 (10/01/2013) 0 3.1.12 (03/09/2015) 6 3.1.13 (05/27/2015) 297,787 NA 100%
WordPress 4.2.0 (04/22/2015) 3 4.2.3 (07/23/2015) 26 4.2.4 (08/04/2015) 262,348 0% 100%

6.1.2 Training based on Web Frameworks
When CSPAutoGen is deployed at the server, web developers can

generate a customized training URL list that has better coverage
than crawling. This is more like a gray-box deployment sitting in
between blackbox and whitebox. The key idea is that most websites
have test cases that cover the source code and explore the website
functionality as much as possible. Therefore, we can utilize these
test cases to generate a list of URLs, which can be used to explore
the scripts on that website.

Specifically, because Alexa websites are closed source, we train
CSPAutoGen based on open-source web frameworks. In the ex-
periment, we use six frameworks, which are Concrete5, Drupal,
Joomla, MyBB, SilverStripe and WordPress.

Here are the details about generating the URL list. Five out of
the six frameworks provide extensive test cases. By modifying the
testing framework to hook the HTTP request sending methods (e.g.,
WP_UnitTestCase.go_to(...) and WebDriver.get(...)), we get a list
of testing URLs with various parameters covering all the interfaces
of the website. Then we use different credential settings (i.e., admin
credential, regular user credential and no credential ) to crawl these
URLs. For the remaining one web framework without test cases
(i.e., MyBB), we first crawl a list of URLs using scrapy [5] frame-
work. Then we use its Google SEO plugin to generate sitemap
automatically and manually supplement URL list with the help of
sitemap as well as source codes. After that, we crawl those URLs
with the above three credential settings.

6.2 Template Robustness
In this section, we evaluate our template’s robustness on unseen

webpages and over time.

6.2.1 Robustness on Unseen Webpages
In this experiment, we evaluate the template robustness on un-

seen webpages. For Alexa websites, we use 500 unseen webpages
that are crawled but not included in the training. For web frame-
works, we deploy the web framework and crawl 500 new web-
pages. In our evaluation of Alexa websites, the average number
of training scripts for each domain is 39,079 and the average num-
ber of testing scripts is 12,087 per domain. The median value of
the number of gASTs for each domain is 262.

Figure 3 shows the matching rate of CSPAutoGen’s templates for
Alexa Top 50 websites: ranging from 91.6% to 100.0%, with a me-
dian value as 99.2%. Such a high matching rate shows that CSPAu-
toGen is able to match most of the unseen scripts, and this is also
confirmed in our compatibility evaluation later. In web framework
evaluation, because of the training method in which we know the
source code, the matching rate is 100% for all six web frameworks.

6.2.2 Robustness over Time
In this subsection, we conduct two experiments on real-world

websites and web frameworks respectively to evaluate how long a
template can achieve a high matching rate without updating.
Robustness on Real-world Websites over Time. In the first ex-
periment, we randomly select six popular websites and show the
template matching rate over three months. Specifically, we train
templates based on the contents of each website on 01/01/2016.
Then we use these templates to match the same website captured
on 02/01/2016, 03/01/2016 and 04/01/2016. In this experiment,
2,000 crawled webpages are used for both training and testing.

The results are shown in Table 1. We set matching rate 90% as
the threshold for template updating. From Table 2, we can see that
the templates of Amazon, CNN, Facebook and Yahoo can work
without updating for at least three months; the templates of Google
and Reddit can maintain satisfying matching rates for two months.
CSPAutoGen can automatically generate template patches. For se-
curity, it is highly suggested that site administrators would review
the patches before applying them. We have interviewed engineers
from 8 big IT companies, including Google, Facebook and Ama-
zon: all of them considered the workload of reviewing templates
every other month acceptable.
Robustness on Web Frameworks over Time. To evaluate tem-
plate robustness of open-source web framework, for each of the
aforementioned six in Section 6.1.2, we deploy three popular re-
lease versions, referred to as the first version (V1), the second ver-
sion (V2) and the third version (V3). In this experiment, we gen-
erate two templates based on V1 and V2, and then use these two
templates to match all the inline scripts extracted from V3.

Table 2 shows the results. Each row contains the versions and
release dates of V1, V2 and V3, the number of gASTs in each tem-
plate, the lines of codes for V3 and the matching rates of the two
templates. The results show that using V2 template to match V3
scripts can achieve an acceptable matching rate (100% except for
Concrete5, which is 85.6%). The median value of the duration be-
tween the release dates of V2 and V3 is 90 days, meaning that on
average, the template can work for three months without requir-
ing updating. As for the matching rates of V1 templates, Drupal,
MyBB and Joomla can still achieve a very high rate and the dura-
tion median value is 268 days. However, SilverStripe, Concrete5
and WordPress’s V1 templates need to be updated.

6.3 Correctness
In this part of the section, we evaluate the correctness of gener-

ated templates. Because Top Alexa websites are closed source, we
can only evaluate web frameworks. Specifically, due to extensive



Table 3: Comparison of Types in WordPress 4.2.3 with
These Inferred by CSPAutoGen

Type # in Ground # in # of Correctly Accuracy
Truth Templates Inferred

CONST 95 97 95 97.9%
ENUM 9 3 3 100%
GAST 0 0 0 N/A
NUMBER 24 24 24 100%
REGEXP 10 14 10 71.4%
URL 9 9 9 100%
Total 147 147 141 95.9% 0 10 20 30 40 50
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Figure 3: Template Matching Rate
(Medium Rate 99.2%).
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Figure 4: The Loading Time of Alexa Top 50
Websites (Median Difference 9.1%).

Table 4: Real-world Applications with All Three Types of XSS Vulnerabili-
ties (Reflected, Stored and DOM-based)

Application Version Vulnerability Language LOC
Codiad 2.4.3 CVE-2014-9582 PHP 8,989
Ektron CMS 9.1.0 CVE-2015-4427 ASP.NET NA
FoeCMS 0.0.1 CVE-2014-4849 PHP 17,943
JForum 2.1.9 CVE-2012-5337 JAVA 61,247
LiteCart 1.1.2.1 CVE-2014-7183 PHP 29,175
OrchardCMS 1.9.0 CVE-2015-5520 ASP.NET 109,467

human works involved in the evaluation, we use WordPress 4.2.3
as an example for the evaluation.

Our methodology is as follows. For each inline script in the
WordPress source code, we find the corresponding template, and
manually compare each PHP part (i.e., runtime information) in the
inline script with each type in the template. For example, if the
type in the template is a URL, and the corresponding PHP variable
value of the inline script in the source code can only be URL, we
will consider the type in the template correctly inferred.

The evaluation results are shown in Table 3. The number of each
type in the WordPress source code, and the number of each type in-
ferred by CSPAutoGen in the templates are listed in the second and
third column respectively. We also list the number of correctly in-
ferred for each type and the corresponding accuracy. First, note that
the total numbers for all the types in both WordPress and templates
are exactly the same, indicating that CSPAutoGen correctly finds
all the possible locations. Second, the overall inference accuracy is
95.9%, a very high number. In some cases, the inferred types by
CSPAutoGen are looser or stricter than the one in WordPress. Par-
ticularly, two CONST types should be ENUM, and four REGEXP
types should be ENUM. The stricter inference (ENUM as CONST)
is because of missing values not captured in the training samples;
correspondingly, the looser inference (ENUM as REGEXP) is due
to the fact that the number of samples with those scripts is smaller
than our default threshold (i.e., 120). In this experiment, the de-
ployed WordPress contains only a few default pages, i.e., in real-
world websites, we expect the accuracy will be even higher, be-
cause the number of samples should reach the threshold, and the
number of training samples will be also larger.

6.4 Security
We evaluate the security of CSPAutoGen in three experiments.

First, we measure whether and how CSPAutoGen can successfully
protect real-world vulnerable applications against existing XSS at-
tacks. Second, as discussed in our type system, we manually re-
view the flexible types, i.e., REGEXP types with sensitive charac-
ters such as ‘%’, ‘.’ and ‘:’. Third, from Alexa Top 50 websites, we
find those with CSP deployed and compare their configured CSPs
with the CSPs generated by CSPAutoGen.
Real-world Applications. To evaluate the security of our system,
we apply CSPAutoGen on six real-world web applications (written

in ASP.NET, Java and PHP) with XSS vulnerabilities listed in Ta-
ble 4. Codiad is a lightweight and interactive web IDE; FoeCMS
is a content management application that is largely used in the
Spanish world; Litecart is a free development platform to build
e-commerce websites. These three applications are all written in
PHP. Orchard CMS and Ektron CMS are both content management
system written in ASP.NET. The former is open source, while the
latter is not. JForum is a lightweight discussion board system im-
plemented in Java. The involved vulnerabilities of these six appli-
cations cover all the three types of XSS, that is, reflected, stored
and DOM-based XSS attacks. In the table, we list the applications’
names, versions, vulnerabilities, languages and lines of codes.

We deploy the six applications and initiate XSS attacks against
them. The attacking payloads are created by XCampo [46], a popu-
lar XSS payload generator. We first verify that these exploits work
on the applications. Then we deploy CSPAutoGen at the entrance
of each application and initiate the same attacks again. The eval-
uation results indicate none of these attacks succeed, showing that
CSPAutoGen defeats against all the three types of XSS attacks.
Manual Reviewing Flexible Types. We count the number of gASTs,
nodes, atom data nodes, complex data nodes, types and flexible
types from the templates of Alexa Top 50 websites. The results are
shown in Table 5: flexible types only account for 1.4% of all the
types. Further analysis shows that on average, four gASTs have one
data node or field assigned with flexible type; the number of flexi-
ble type for each domain template ranges from 1 (e.g., ask.com) to
243 (i.e., amazon.com) with the median of 81 (i.e., baidu.com).

We then evaluate the workload of manual reviewing flexible types.
We randomly pick out five websites (aliexpress.com, reddit.com,
taobao.com, weibo.com and youtube.com). The numbers of their
flexible types are 121, 6, 59, 27 and 90 respectively. With the help
of visual template portal (Section 4.3), one student reviews and
modifies these flexible types in 2 days (16 hours). Our reviewing
shows that no flexible type in these templates needs to be changed
to more restrictive ones. Also, fully understanding those reviewed
scripts are not required because the visual template portal lists all
the training samples and highlights the corresponding values.
Comparison with existing websites’ CSPs. Among Alexa Top
50 websites, six websites (facebook.com, twitter.com, yandex.ru,
mail.ru, pinterest.com and alibaba.com) have configured CSPs. How-
ever, five out of the six set both keywords “unsafe-inline” and “unsafe-
eval” in their CSPs, and the remaining one (twitter.com) sets “unsafe-
eval”. “unsafe-inline” still allows an attacker to inject scripts via
both stored and reflected XSS, and “unsafe-eval” allows DOM-
based XSS attacks. As a comparison, the CSPs generated by CSPAu-
toGen set neither “unsafe-inline” nor “unsafe-eval”, being more se-
cure than CSPs used in any of the six websites. That is, CSPAuto-
Gen can even help existing websites that partially adopt CSP and
enhance their security.



Table 5: Templates Statistics of the Alexa Top 50 Websites.
gAST Total Atom Complex Type Flexible
Number Node Data Node Data Node Type
20,888 1,922,147 225,807 57,391 322,194 4,580

Table 6: The Breakdown of CSPAutoGen Latency.
Latency Source Min (ms) Median (ms) Max (ms)
DOM Tree Parsing 1.97 112.62 1349.00
Script Transmission (Rewriting Phase) 23 51 332
gAST Building ∼0 0.2 33
Template Matching ∼0 0.1 0.5
Runtime-included Script 9 107 1419
Symbolic Template ∼0 9 64

6.5 Performance Overhead
We first evaluate CSPAutoGen’s overhead by calculating the time

difference of browsing Alexa Top 50 Websites with and without
CSPAutoGen. To have a better understanding of the performance,
we break down the overhead and measure the latency of DOM Tree
parse, JavaScript AST generation, template matching, and handling
runtime-included scripts and dynamic scripts.
Overall Latency Overhead. In this experiment, we deploy CSPAu-
toGen’s applier engine in a middlebox proxy, which runs on a 2.20
GHz Intel Xeon E5 server with 64GB RAM running Ubuntu 14.04.
Other CSPAutoGen components, including JavaScript server, vio-
lation report server and whitelist server, all run on the same server
but listen to different port. We refer to this server as CSPAuto-
Gen server. The client-side machine is a 1.4GHz Intel Core i5 Mac
Air machine with 8GB RAM running OSX 10.9 and Chrome 43.
The latency between the client and the CSPAutoGen server is 0.5
ms. Then, we evaluate our Alexa dataset with and without deploy-
ing CSPAutoGen on mitmproxy. Each experiment is repeated five
times without caching contents, and we use the median value.

Figure 4 shows the evaluation results with the blue solid line as
the loading time with CSPAutoGen and the red dotted line as the
one without CSPAutoGen. The median loading time are 5.94s and
5.11s respectively. When sorted by the difference of the two load-
ing times, the median value is 470ms, i.e., 9.1%. This means that
CSPAutoGen’s median overhead for the server and middlebox de-
ployment is 9.1%. If deployed at client side, the client-perceived
overhead should be CSPAutoGen’s overhead plus a proxy or exten-
sion’s overhead depending on how it is implemented.
Latency Overhead Breakdown. To have a better understanding
of CSPAutoGen’s latency, we break down its latency into the fol-
lowing categories (1) DOM Tree parsing, (2) scripts transmission
(sending all scripts in a webpage to JavaScript server for match-
ing from applier engine), (3). gAST building, (4) template match-
ing, (5) handling runtime-included script, and (6) handing dynamic
script. We evaluate the min, max and median value for each of them
on our Alexa dataset. DOM Tree parsing and scripts transmission
happen at rewriting phase; gAST building and template matching
happen at rewriting and runtime phase; handling runtime-included
scripts and dynamic scripts both happen at runtime phase.

Table 6 shows the evaluation results. Note that the time precision
of JavaScript is 1ms, so when evaluating the latency of JavaScript-
related codes, we repeat each snippet of codes to be measured for
ten times and then calculate the average number. For the ones
whose ten-time latency is still zero, we record them as ∼0, indi-
cating those latency negligible. From Table 6, the biggest overhead
comes from handling runtime-included script and DOM Tree pars-
ing. For the former, it works asynchronously and thus incurs little
overhead on the system; the later contributes most to the CSPAuto-
Gen’s overhead. One future work is to improve the performance by
replacing CSPAutoGen’s HTML parser (we now use html5lib [7],

Table 7: Script Matching Rates in Behind-the-login Functionality Experiment.

Domain Eval Function setTimeout & Runtime-included
setInterval Inline Script

Amazon 100% 100% 99.6% 99.8%
(48/48) (168/168) (69,221/69,499) (4,998/5,008)

Gmail 100% 75% 97.8% 98.8%
(134/134) (3/4) (4,313/4,411) (2,038/2,061)

Google 100% N/A 98.0% 97.0%
(182/182) (0/0) (539/550) (875/902)

Linkedin 100% 100% 92.1% 89.6%
(27/27) (81/81) (70/76) (831/927)

Yahoo N/A 100% 99.8% 95.9%
(0/0) (38/38) (1,602/1,606) (421/439)

a Python implementation parser) with a more efficient one, such
as Mozilla’s DOMParser [2]. Because the CSPAutoGen JavaScript
server and applier engine reside in the same physical server, the
script transmission delay in rewriting phase is acceptable: the me-
dian value is 51 ms per webpage.

The overhead of gAST building and template matching is small:
during loading time, CSPAutoGen processes ∼20 scripts on aver-
age for each webpage, so the estimated overall overhead of gAST
building would be 4 ms and overall overhead for template matching
would be 2 ms respectively.

6.6 Compatibility
In this section, we evaluate CSPAutoGen’s compatibility with

real-world websites from two aspects: the appearance and the deep,
behind-the-login functionalities.
Appearance. We evaluate whether the front pages of Alexa Top 50
websites can be correctly displayed based on the similarity scores
of screenshots taken with and without CSPAutoGen deployed. Here
is our methodology. We browse each front pages twice: at first, we
deploy CSPAutoGen and take a screenshot of the webpage after it
is loaded, which we refer to as CSP_image; next, we repeat the
process without deploying CSPAutoGen and obtain another screen-
shot referred to as std_image. We then calculate the image similar-
ity score, called CSP_score, between CSP_image and std_image,
based on image histogram [26]. If CSP_score is larger than 0.9,
indicating that users can hardly notice any difference [26], we will
not examine the website. Note that, for about half of the 50 web-
sites, due to the existence of advertisement and real-time contents
(such as news), even consecutive screenshots of the same front page
without deploying CSPAutoGen render a similarity score, which we
refer to as std_score, less than 0.9. Therefore, if CSP_score is less
than 0.9, we will manually compare these two screenshots.

The results show that the front pages of 28 websites pass our
initial filtering stage, i.e., CSP_score is larger than 0.9. Then, we
manually examine the rest 22 websites’ front pages, and find that
the differences that a human eye can notice are all caused by adver-
tisements and news update. We further compare CSP_score with
std_score for these 22 websites’ front pages, and find out that the
differences between two scores are all less than 0.1, which is an-
other evidence that the low similarity scores are caused by the web-
site itself. In addition, we find that the DOM tree structures of these
webpages with and without CSPAutoGen are exactly the same.
Behind-the-login Functionalities. To explore the deep, behind-
the-login functionalities of websites with CSPAutoGen deployed,
we choose five major website categories based on their functional-
ities: email, online searching, online shopping, online social net-
work and web portal. For each category, we manually conduct one
extensive case study on the most popular website (based on Alexa
ranking) that has not deployed CSP at the time of our study.

The results show that all the tested functionalities of these web-
sites work properly with CSPAutoGen deployed. Table 7 shows
the matching rates of unique dynamic and runtime-included inline



scripts that CSPAutoGen has encountered and processed in the ex-
periment. Now we introduce the experiment details.
Email—Gmail. We register and log into a new Google account.
Then, we send ten emails to different recipients with various attach-
ments, links and photos from this account. All the ten recipients can
receive the emails successfully. Next, these recipients reply to the
emails with different attachments and contents. We can receive all
these emails and the client-side Gmail with CSPAutoGen deployed
can correctly render the contents. For the ones with attachments,
we successfully download all of them from graphic user interface.
Online Searching—Google. We use the Google account in the Gmail
experiment, and search ten different keywords on different Google
products. These products include Google Search, Google Images,
Google Books, Google Maps, Google Shopping, Google Videos,
Google News, Google Flights and Google Apps. All the searching
results can be displayed correctly. Then, we use Google’s advanced
search functionality, searching ten times with random conditions.
Online Shopping—Amazon. We register and log into an Amazon
account. Then, we search ten different products, such as jewelry
and books. After reviewing product descriptions and customer re-
views, we successfully purchase a book and a coffee maker with a
newly-added credit card.
Online Social Network—Linkedin. Because both Facebook and
Twitter have deployed CSP, we use Linkedin in the experiment. We
register and log into a new Linkedin account. Then, we upload a
photo, publish a post, search and connect to five people. Next, we
like, comment and share two posts from these connections. Lastly,
we send messages to two people, one connected with the account
and one not.
Web Portal—Yahoo. We register a Yahoo account via Audio code
and log into the account. Then we open ten news/posts belonging
to different categories. We like, comment on two news and then
share them to our Facebook and Twitter accounts.

7. DISCUSSION
Inline CSS. In this version of CSPAutoGen, we do not disable
inline CSS. However, CSPAutoGen is easily extendable to sup-
port disabling inline CSS without incurring compatibility issues, as
what we did for JavaScript, and we plan to support disabling inline
CSS in next version of CSPAutoGen. Note that even if CSPAu-
toGen does not support disabling inline CSS, an attacker cannot
inject JavaScript embedded in CSS rules because injected scripts
are blocked by CSPAutoGen.
Obfuscated Code. Code obfuscation does not influence the gen-
eration of gAST and symbolic templates, because obfuscated code
is still parsed and executed in the browser. In addition, the number
of flexible types in obfuscated code is similar to the one in normal
code, because most of the strings in obfuscated code are inferred as
const or enum type.
Event Triggering. In the headless browser cluster of the training
phase, we triggered all the registered events. However, the trigger-
ing does not have any effects on the template generation. The rea-
son is that we obtain all the scripts in the DOM, no matter they are
triggered or not. The only exception is that when dynamic scripts
or runtime-included scripts are embedded inside an event handler,
but in practice we did not find any web developers did so.
Script Execution Sequence. CSPAutoGen does not change the
original script execution sequence, i.e., both synchronous and asyn-
chronous scripts are still executed the way as they are. For example,
synchronous scripts inside eval or eval-like functions are executed
synchronously through symbolic templates, an essentially built-in
function call; asynchronous, runtime-included, inline scripts are

executed inside DOM event handlers, an asynchronous script ex-
ecution method.

8. RELATED WORK
In this section, we first introduce several works in automatic en-

forcement of CSP. Then we present past works preventing XSS at-
tacks. Lastly, we discuss related works in academia and industry
using rewriting and AST techniques.
Automatic Enforcement of CSP. Researchers have proposed sev-
eral interesting works on automatic enforcement of CSP [12,14,17,
23]. The first work of facilitating CSP adoption is deDacota [12].
Primarily, it statically rewrites ASP.NET applications to separate
data and codes; AutoCSP [14] uses dynamic taint analysis in PHP
to find trusted elements of dynamically generated HTML pages
and then infers a policy to block untrusted elements, while allow-
ing trusted ones. Both AutoCSP and deDacota are white-box ap-
proaches, i.e., they need to access target application’s codes and re-
quire server modifications. Moreover, neither AutoCSP nor deDa-
cota can securely transform runtime-included inline scripts or dy-
namic scripts to comply with the strictest CSP. As a comparison,
CSPAutoGen requires no server-side modifications, and allows trusted
runtime-included inline scripts and dynamic scripts.

A black-box approach, autoCSP [17], first generates strictest poli-
cies and then gradually relaxes them by adding the scripts received
from users’ violation reports to its whitelist. Kerschbaumer et al. [23]
adopt crowdsourcing approach to collect JavaScripts’ hashes and
then generate CSP rules based on these collected hashes, i.e., they
adopt strict string matching for inline scripts. Neither of the afore-
mentioned approaches can process inline scripts with runtime in-
formation, runtime-included inline scripts and dynamic scripts. Ac-
cording to our manual analysis, 46 of Top 50 Alexa websites con-
tain such script usages. That is, they cannot be deployable with
real-world websites. As a comparison, CSPAutoGen is compatible
with all Alexa Top 50 websites.

To defend against XSS attacks, other than CSP, researchers have
also proposed many approaches before, which can be further classi-
fied as sever-side methods [9,10,19,21,22,29,30,36–38,40,42] and
client-side methods [20, 32]. We focus on the deployment of CSP,
because it has been adopted by all major browsers and standardized
by W3C [1].
Server-side Defenses of XSS Attacks. XSS-GUARD [10] dy-
namically determines legitimate scripts and removes illegitimate
ones from responses. However, since it only works at server side,
XSS-GUARD cannot determine whether dynamic scripts are le-
gitimate or not. As a comparison, CSPAutoGen can address both
static scripts and dynamic scripts. BLUEPRINT [30] proposes an
approach to ensure the safe construction of the intended HTML
parse tree on the client without changing browser. Template-based
approaches [36, 37] propose novel web frameworks that incorpo-
rate correct sanitization based on contexts. There are also many
works based on server-side input sanitization [9, 19, 40]. All the
aforementioned approaches require server-side modifications. As
a comparison, CSPAutoGen has a much more flexible deployment
model, which can be at a server, client, or middlebox.

Many other XSS defenses are based on flow analysis or taint
tracking [21, 22, 29, 29, 31, 38, 42]. Compared with CSPAutoGen,
such programming analysis requires server modification and is bound
to a certain programming language. For example, Taj [42] works
specifically for Java, while Pixy [21] only operates on PHP.
Client-side Defenses of XSS Attacks. Lekies et al. [27] focus on
detecting DOM-based XSS vulnerabilities using taint analysis ap-
proach. Saxena et al. [39] highlight a new class of vulnerabilities,
referred to as client-side validation vulnerabilities, and propose a



dynamic analysis system to discover it. Noxes [25] is a client-side
firewall-based defense that protects users with permit/deny rules
to restrict HTTP requests. Similar to CSP, BEEP [20] and Con-
Script [32] are policy-based approaches: websites specify security
policies and the client-side browser enforces these policies. Un-
like CSP used in CSPAutoGen, they are not supported by existing
browsers so client-side modifications are required.
Rewriting Technique. CSPAutoGen rewrites webpages to auto-
matically generate CSPs without compromising compatibility. Rewrit-
ing techniques have been widely used in academia [13, 24, 28] and
industry [4, 6]. In academia, WebShield [28] rewrites webpages
to enable web defense techniques. Erlingsson et al. [13] enforce
security policies on binaries by taking advantage of rewriting tech-
niques. In industry, ShapeSecurity [6], a commercial product, rewrites
websites to prevent bot and malware. Google’s PageSpeed Mod-
ule [4] improves websites’ performance by rewriting webpages.
AST Technique. Abstract Syntax Tree (AST) has been widely
used by web security researchers to extract JavaScript structure in-
formation [11, 18, 35]. However, these works do not aim to gener-
ate script templates and thus cannot address the challenges of inline
scripts with runtime information or dynamic scripts.

9. CONCLUSION
In conclusion, we propose CSPAutoGen, which generates CSPs

from training dataset, rewrites webpages in real-time to insert CSPs,
and applies CSPs at client browsers. CSPAutoGen is able to deal
with all the real-world yet unsafe script usages, such as inline scripts
with runtime information and dynamic scripts, and securely convert
them to be compatible with CSP.

Our evaluation shows that CSPAutoGen can correctly render all
Top 50 Alexa websites. The correctness evaluation that compares
generated gAST templates with web framework source code shows
that CSPAutoGen can successfully infer type information with 95.9%
accuracy. In addition, CSPAutoGen only incurs 9.1% overhead in
median when rendering the front pages of Alexa Top 50 websites.
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