
Rendering Contention Channel Made Practical in Web Browsers

Shujiang Wu†, Jianjia Yu†, Min Yang‡, and Yinzhi Cao†∗
†Johns Hopkins University

‡Fudan University

Abstract
Browser rendering utilizes hardware resources shared

within and across browsers to display web contents, thus
inevitably being vulnerable to side channel attacks. Prior
works have studied rendering side channels that are caused
by rendering time differences of one frame, such as URL
color change. However, it still remains unclear how rendering
contentions play a role in side-channel attacks and covert
communications.

In this paper, we design a novel rendering contention chan-
nel. Specifically, we stress the browser’s rendering resource
with stable, self-adjustable pressure and measure the time
taken to render a sequence of frames. The measured time
sequence is further used to infer any co-rendering event of the
browser.

To better understand the channel, we study its cause via
a method called single variable testing. That is, we keep all
variables the same but only change one to test whether the
changed variable contributes to the contention. Our results
show that CPU, GPU and screen buffer are all part of the
contention.

To demonstrate the channel’s feasibility, we design and im-
plement a prototype, open-source framework, called SIDER,
to launch four attacks using the rendering contention channel,
which are (i) cross-browser, cross-mode cookie synchroniza-
tion, (ii) history sniffing, (iii) website fingerprinting, and (iv)
keystroke logging. Our evaluation shows the effectiveness
and feasibility of all four attacks.

1 Introduction
1.1 Rendering Contention Channel

Rendering is an important component of modern web
browsers, which converts raw text-based data from the In-
ternet, e.g., HTML and images, to something displayable on
the computer screen. At the high-level, the operating system
(OS) provides rendering as abstract resources to web browsers
via libraries like DirectX and OpenGL; at the low-level, the

∗Dr. Yinzhi Cao is the corresponding author.

abstracted rendering resource are broken down into different
hardware resources such as CPU, GPU, and screen buffer. No
matter at high- or low-level, rendering resources are shared
by all processes running on the same OS and web frames on
the same browser, thus inevitably being vulnerable to side
channels.

Prior works—such as Stone [54], Smith et al. [51], and
Huang et al. [23]—have showed that an adversary can mea-
sure a particular, microscale rendering event, such as a link
color change and an SVG filter effect, happening in just one
rendering frame to infer a cross-origin secret. However, de-
spite their success, it remains unclear how the contentions on
rendering, a scarce resource provided by the OS, can be used
for side-channel attacks and covert communications.

In this paper, we design a novel rendering contention chan-
nel, which stresses the rendering resources with stable, self-
adjustable pressure from a browser and measures the time
taken to render a sequence of frames. The measured time
sequence is then used to infer any co-rendering events.

Because the channel is less known to the research com-
munity, we study it using a method, called Single Variable
Testing, to better understand the cause of the channel. The
method only changes the pressure on one single variable, e.g.,
GPU, CPU and screen buffer, during the rendering pipeline,
but keeps all others unchanged to measure the Signal-to-Noise
Ratio (SNR). If the SNR changes together with the tested
variable, we consider that the contention on that variable con-
tributes to the channel.

The results show that GPU, CPU and screen buffer all
contributes to the channel. The breakdown is actually compli-
cated though, which depends on different configurations. For
example, hardware rendering has all three variables involved,
but software rendering only has CPU and screen buffer con-
tention because GPU is not used in the rendering process. This
further demonstrates the necessity in abstracting the channel
as rendering contention.

1.2 Rendering Contention Channel Attacks

One important research question, besides the causes for the
channel, is what attacks we can launch using the channel. Here
we illustrate three example co-rendering events as targets and
four attacks using this channel.

First, we describe a client-side covert communication be-
tween different browsers (e.g., Safari and Chrome) and modes
(e.g., normal and incognito) where the co-rendering event is
controlled by the sender. Specifically, the sender modulates
target signal by pausing and continuing a rendering event
as zeros and ones and the receiver observes the rendering
workload change to de-modulate the signal. Such a convert
communication can be used to synchronize cookies. Then, it
can either deliver targeted ads for third-party tracking web-
sites like DoubleClick or limit the number of free articles for
news websites like NYTimes.

Second, let us consider webpage rendering as a co-
rendering event. Modern browsers adopt a technique, called
incremental rendering [5], to accelerate rendering and show
rendered contents to users as soon as possible. At the same
time, this also leads to two types of attacks, (i) history sniffing
and (ii) website fingerprinting, as we discussed below:
• History sniffing attack is possible because incremental ren-

dering groups cached contents together, making the render-
ing of a visited website different from unvisited. Such an
attack is harder to defend against when compared with prior
history sniffing attacks like those [51, 54] relying on the
rendering of link color, because the slow-down of the entire
page rendering will significantly hamper user experience.

• Website fingerprinting attack is possible because incre-
mental rendering also make the renderings of different
web pages unique. Such a website fingerprinting attack
is complementary to many existing website fingerprinting
attacks [19, 49] relying on side-channels unrelated to ren-
dering contention.
Lastly, we consider the co-rendering event as the rendering

of a small area of a webpage, such as a div tag. Modern web
search engines like Google all support autocomplete to give
users real-time suggestions during typing, or in other words,
render a new div element. Therefore, an adversary can infer
what the user types from the appearance timestamp of each
new div element. Note that this attack is the weakest among
all four because the rendering area is small—we include it for
the completeness in describing the rendering channel.

1.3 Rendering Contention Framework

While all four attacks are theoretically possible on the ren-
dering contention channel, the design and implementation of
these attacks in real-world face one major challenge, i.e., the
high noise level. Such noise comes from difference sources,
such as browser-introduce jitters and other rendering tasks.

In this paper, we propose to build a framework, called
SIDER, to launch attacks using the rendering contention chan-
nel. One important task of SIDER is to denoise the signal

from the rendering contention channel. Specifically, our ob-
servation is that the over-time rendering pattern as a whole—
despite a few abnormal data points—contains the semantics
of the target co-rendering event. Therefore, SIDER smoothes
out and normalizes the rendering pattern using a sliding win-
dow and then adopts a distance calculation considering data
shifting and sudden, high-value noises.

Another important task of SIDER is to compare the de-
noised target signal with a reference group. This is useful
because although SIDER often has one chance to run the tar-
get event, SIDER can run multiple baseline rendering events.
Take the history sniffing attack for example. SIDER can only
load the webpage once before it is cached, but it can load the
webpage multiple times to obtain the patterns for cached web-
page. Specifically, we proposed two algorithms for this: (i) a
max-min algorithm designed by us and (ii) a DNN-based al-
gorithm. The former is used online when the reference group
size is small, e.g., in history sniffing. The insight is that if
the minimum distance between the target and the reference
group is larger than the maximum distance among samples
within the group, the target is an outlier. The latter is used
offline when the reference group size is large, e.g., in website
history sniffing. We particularly design the DNN architecture
so that it can support multiple side channels and varied length
of input data.

To facilitate open science, we have made our implemen-
tation open-source at this anonymous repository (https:
//github.com/renderingsidechannelattacks/
rendersidechannelattacks). We also release our
dataset together with the open-source code in the afore-
mentioned repository. For those who are interested in
our attack, a demo can be found at this URL (http:
//www.renderingsidechannelattacks.com:8080/).

2 Related Work
In this section, we discuss existing attacks and defenses.

2.1 Existing Side- or Covert-channels

Side-channel attacks [25, 29, 38, 65, 66] are a well-studied
problem across different platforms. Researchers have studied
browser-level side channels for a long time including but not
limited to lower-level caching attacks [21, 45], performance-
based browser type and version inference [41,42], document’s
visual content inference [31], and script and video size infer-
ence [55, 56]. We now describe them based on four attacks.

• Cross-browser cookie synchronization. We are unaware
of existing works that can achieve direct client-side cross-
browser cookie synchronization. The closest work is cross-
browser fingerprinting [13], which can restore client-side
cookies based on the same fingerprint. However, this
restoration needs server supports and introduces many false
positives due to fingerprint collision.

• History sniffing attack. The earliest history sniffing at-
tack from Felten et al. [19] shows that the loading time of

https://github.com/renderingsidechannelattacks/rendersidechannelattacks
https://github.com/renderingsidechannelattacks/rendersidechannelattacks
https://github.com/renderingsidechannelattacks/rendersidechannelattacks
http://www.renderingsidechannelattacks.com:8080/
http://www.renderingsidechannelattacks.com:8080/

Table 1: A high-level comparison of the work with a representative selection of other existing side channels.

Work Side Channel Adversary

Attack Type

Sampling Rate
Avg attack

Cross-browser
Cookie Sync

History
Sniffing

Website
Fingerprinting

Keystroke
Logging

time

Lifshit et al. [36] Power consumption External hardware 7 7 outside browser 3 1000 Hz ≈10 s
Oren et al. [45], Shusterman et al. [49] Last-level cache Cross-origin page 7 7 same-browser∗ 3∗∗ 10–500 Hz ≈30 s
Felten et al. [19] Page loading Cross-origin page 7 3 7 7 N/A ≈3 s
Stone [54], Smith et al. [51], Huang et al. [23] URL rendering Cross-origin page 7 3r 7 7 N/A ≈20 ms
Naghibijouybari et al. [43] GPU CUDA/OpenGL 7 7 outside browser 3 >1000 Hz ≈3 s
Monaco et al. [40] Network package Network sniffer 7 7 7 3 N/A N/A
Panchenko et al. [46] Network package Network sniffer 7 7 outside browser 7 N/A ≈3 s
Rendering contention channel (this work) Page rendering Cross-origin page 3 3 same-&cross-browser 3 10–60 Hz ≈3 s

3: The attack is feasible using the side channel, 3r: the attack is feasible but fixed by some browsers [3], 7: The attack is not feasible using the side channel.
∗: Existing papers do not have evaluations on cross-browser website fingerprinting and we show that the channel’s cross-browser performance is reasonably low (See Table 5).
∗∗: Although no research and experiments have been conducted using this side channel for keystroke logging, our experiment shows that it is at least feasible.

a web page can be used to sniff browser history. Such a
decade old side channel, although still being there, is less
severe because the loading time depends on the slowest
component, which may not be cached like many Chinese
websites such as sohu, QQ and 360. Stone [54] proposes
that link color change between visited and unvisited URLs
can be used to infer browser history, and later on Smith et
al. [51] and Huang et al. [23] also improve the attack in
modern browsers with defense. Google fixed this attack [3]
by adding another rendering event between two visited
URLs to reduce the statistical difference.

• Website fingerprinting. Naghibijouybari et al. [43] and
Gulmezoglu et al. [22] show that an openGL or a CUDA
program can infer the website based on GPU’s performance
counter. Jana et al. [26] track changes in the application’s
memory footprint and identify the website users are visiting.
Kim et al. [28] show that browser activities and statuses can
be inferred by monitoring storage usages. Vila et al. [57]
shows that the shared event loops as a side channel can be
used for identification of websites. Shusterman et al. [49]
show that the cache occupancy channel contending for last-
level cache can be used to fingerprint websites. Matuyunin
et al. [39] and Lifshits et al. [36] show the possibility of us-
ing magnetometer and malicious batteries as side channels
in fingerprinting websites. Yang et al. [62] and Spreitzer et
al. [52] exploit USB power analysis and mobile data-usage
statistics for website fingerprinting. Clark et al. [17] study
electrical outlets as a side channel to identify webpages.

• Keystroke logging. Wang et al. [59] perform keystroke log-
ging attacks via exploiting graphic libraries. Lipp et al. [37]
rely on the interrupt-timing side channel to log keystrokes
using sandboxed JavaScript. The aforementioned shared
event loops [57] as a side channel can also be used for
keystroke logging.

Other than the aforementioned attacks, side channels, espe-
cially those in WebGL and GPU, can also be used for different
purposes. Lee et al. [33] study several GPU vulnerabilities,
e.g., the inference of webpage via memory size. The threat
model of their attacks assumes a malicious CUDA or openGL

program. Booth [9] exploit resource-based side channels and
show their effectiveness.

Comparison with Rendering Contention Channel We
compare existing channels in Table 1:

• Adversary. A cross-origin page refers to a webpage with
an origin different from the target, which is a strong model
because of its easiness to launch attacks. In the past, other
attack models are also adopted, such as an openGL/CUDA
program, a network sniffer and a hardware adversary.

• Attack Type. The rendering contention channel supports
three side-channel attacks and one covert-channel attack.
Cross-browser is a strong property of this channel, which
leads to two unique attacks, i.e., cross-browser website
fingerprinting and cookie synchronization.

• Attack Time and Sampling Rate. The rendering contention
channel has similar low sampling rate as the state of the
art, i.e., the cache occupancy channel. At the same time,
the attack time is shorter, because rendering mostly hap-
pens before the onload event but JavaScript is still running
heavily after the onload event.

2.2 Defense against Side Channels

Browser vendors, like Firefox, Chrome and Tor
Browser [6], are reducing the resolution of its timer
like performance.now and adding jitters as a defense.
Fuzzyfox [30] introduces fuzzy time to Firefox to reduce
a new clock edge attack. JavaScript Zero [48] also adds
noise to performance.now via a redefinition of JavaScript
APIs in Chrome extension. DeterFox [12] and JSKernel [16]
enforce a deterministic time upon all the events, such as
frame rendering. Wu et al. [60] show that the side channel
from Cao et al. [13] is caused by floating-point operations
and propose to adopt integer operations and make WebGL
rendering uniform. Some new browser architectures and
defenses [2, 14] are proposed to isolate third-party JavaScript
but cannot defend against side-channel attacks. In addition to
browser-level defenses, there also exists many defenses [8,
10, 11, 15, 20, 24, 27, 32, 34, 35, 44, 47, 50, 53, 58, 61, 63, 64] in
the system level against general timing attacks.

25

30

35

40

45

30

40

50

R
e

n
d

e
ri

n
g

 t
im

e
 (

m
s
)

0 50 100 150 200 250 300

Num ber of Fram es

30

40

50

60 Youtube

QQ

Google

Figure 1: Rendering Patterns of QQ (www.qq.com), Google
and Youtube in Tor Browser Observed from a Chrome Win-
dow through the Rendering Channel.

Rendering
Input

Preparat
ion

Rendering
Pipeline

Contention
Hardware Software

rendering

Hardware
rendering

Vertex
Shader

Fragment
Shader

Screen

CPU GPU

Rasteriz
ation

Screen bu er

CPU Screen bu er

Rendering Resource
Contention
Resource

OS
Abstraction

Figure 2: Rendering Pipeline and Hardware Resources.

3 Rendering Contention Channel
In this section, we answer two fundamental questions: (i) what
the channel is, and (ii) what the channel’s cause is (i.e., why
the channel exists).

3.1 What is the rendering contention channel?

Key Take-away Answer: The rendering contention
channel is that the observer, when rendering a specific
workload, measures the interval between each con-
secutive frame and then uses the measured interval
sequence as the pattern to infer another co-rendering
target.

The rendering contention channel has two parties: the tar-
get and the observer. The target renders a graphics-heavy
macroscale event, such as page loading; the observer mea-
sures the time to render each frame and records each frame’s
time as a vector to infer what the target is rendering. For ex-
ample, Figure 1 shows clear, differentiable rendering patterns
of three websites (QQ, Google and Youtube) visited in Tor
Browser 9.0.1 but observed in Google Chrome 84.

One interesting observation here is that the channel is very
noisy. There are multiple reasons. First, modern web browsers
introduce a low-resolution timer and adding jitters to the timer
to defend against timing channels in general. Therefore, the
observed pattern fluctuates within a certain range like a back-
ground noise even if there is no target rendering events, e.g.,
Frame 50 and after in Figure 1 (Google) when Google fin-
ished rendering. Second, there are many events other than the

target that may also be rendered at the same time to contend
for the resource, e.g., the local peak at around Frame 230 in
Figure 1 (Google). Third, network delays may prolong a one-
frame rendering event into two or more frames, e.g., causing
a half-loaded and then a fully-loaded image. The peak in Fig-
ure 1 for Youtube at around Frame 230 is such an example,
which is supposed to exist in just one frame but spans over
two frames in the figure.

3.2 What is the rendering contention channel’s cause?

Key Take-away Answer: At the high level, the cause
is a contention on the rendering resource abstracted
by the operating system.
At the low level, we find three contention causes for
the channel: GPU, CPU, and screen buffer. All three
contribute to hardware rendering; only the latter two
contribute to software rendering.

3.2.1 Methodology: Single Variable Testing

In this part, we describe our methodology—called Single
Variable Testing—to analyze the channel’s cause. The high-
level idea is that we only change one single contributing factor
(i.e., a single variable) of the channel but keep all others the
same. Then, we observe the Signal-to-Noise Ratio (SNR) of
the channel, which is defined in Equation 1.

SNRdB = 10log10
Psignal

Pnoise
= 10log10

Psignal

Pmeasured−Psignal
(1)

where Psignal is the average power of the ground truth signal
and Pmeasured is the average power of the measured signal
from the channel. Note that if the SNR value changes with
different values of the variable, the variable is considered as
an influential factor—i.e., one cause—of the channel.

Next, we describe two things: (i) how to change each vari-
able and (ii) what variables are considered. First, intuitively,
because the rendering channel is a contention channel, we
need to introduce workload for each considered variable. At
the same time, we also need to change the workload constantly
to introduce more noise for the channel—the more frequent
the changes are, the more noise is added to the channel.

Second, we introduce different variables that are tested in
the analysis. Figure 2 shows the rendering pipeline adopted
by modern computers from input data to rendered images on
the screen. From the high-level, rendering is abstracted by the
OS as a resource; from the low-level, different elements in
the pipeline are handled by different hardware resources and
we describe them below.
• CPU. CPU is involved in the rendering pipeline because

it prepares data, e.g., matrices, for the GPU in hardware
rendering or performs all the job in software rendering. We
launch CPU-intensive programs and change the workload
and the number of threads to test the influence of CPU on
the channel.

0 5 10 15 20 25 30

Frequency (per m inute)

− 10

− 5

0

5

10

15

20

S
N

R
 (

d
B

)

Mac Pro

iMac

Windo s

Ubuntu

(a) CPU (varying frequencies, 8
threads, HW rendering)

0 2 4 6 8 10 12 14 16

Thread num ber

0

5

10

15

20

S
N

R
 (

d
B

)

Mac Pro

iMac

Windows

Ubuntu

(b) CPU (varying threads, 30/min, HW
rendering)

0 5 10 15 20 25 30

Frequency (per m inute)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

S
N

R
 (

d
B

)

Mac Pro

iMac

Windows

Ubuntu

(c) GPU (varying frequencies, HW ren-
dering)

0 5 10 15 20 25 30

Frequency (per m inute)

4

6

8

10

12

14

16

18

20

S
N

R
 (

d
B

)

Mac Pro

iMac

Windows

Ubuntu

(d) Screen buffer (varying frequencies,
HW rendering)

0 5 10 15 20 25 30

Frequency (per m inute)

− 10

− 5

0

5

10

15

20

S
N

R
 (

d
B

)

Mac Pro

iMac

Windo s

Ubuntu

(e) CPU (varying frequencies, 8
threads, SW rendering)

0 2 4 6 8 10 12 14 16

Thread num ber

0

5

10

15

20

S
N

R
 (

d
B

)

Mac Pro

iMac

Windows

Ubuntu

(f) CPU (varying threads, 30/min, SW
rendering)

0 5 10 15 20 25 30

Frequency (per m inute)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

S
N

R
 (

d
B

)

Mac Pro

iMac

Windows

Ubuntu

(g) GPU (varying frequencies, SW ren-
dering)

0 5 10 15 20 25 30

Frequency (per m inute)

4

6

8

10

12

14

16

18

20

S
N

R
 (

d
B

)

Mac Pro

iMac

Windows

Ubuntu

(h) Screen buffer (varying frequencies,
SW rendering)

Figure 3: Signal-to-Noise Ratio (SNR) of the Rendering Contention Channel with Different Single Variables (HW: hardware and
SW: software; the default number of thread is 8 and the noise frequency is 30 per minute if not otherwise indicated).

• GPU. GPU is involved in the rendering pipeline because
vertex and fragment shaders are usually run in GPU to
accelerate the calculation. We launch two programs: one
with random matrix calculation using OpenCL in a certain
frequency and the other without the calculation in the same
frequency. Then, we deduct the SNR degradation caused
by the latter from the former to reduce the CPU influence.
Note that we choose OpenCL instead of OpenGL to remove
the impacts of the screen buffer involvement.

• Screen buffer (or called Framebuffer). Screen buffer is
the final stage of the rendering pipeline, which stores all
the data to render in a video frame. Similar to the GPU
experiment, we launch two programs: one outputting ran-
dom pre-generated colors to the screen buffer in a certain
frequency and the other that generates colors in the same
frequency but do not draw them. Then, we deduct the SNR
degradation caused by latter from the former to remove any
GPU or CPU influence.

3.2.2 Experimental Setup

In this part, we describe computers and configurations used
in the experiment. We have three computers: (i) iMac 4-core
Intel Core i5-7600 CPU @ 3.50GHz with Radeon Pro 575
(called iMac), (ii) MacBook Pro 6-core Intel Core i7-9850H
CPU @ 2.60GHz with Intel UHD Graphics 630 (called Mac
Pro), (iii) Alienware Aurora R7 6-core Intel Core i7-8700k
@ 3.7GHz LLC 12MB with NVIDIA GeForce GTX 1080
with Windows 10 (called Windows) and Ubuntu 20.10 (called
Linux) dual Operating Systems. We use Chrome 90 for all
the experiments in this section.

During the experiment, we run three programs, one as the
sender, one as the observer, and the last as the noise generator.
The sender runs a random workload used as the ground truth
and the observer compares what been measured in the channel
with the ground truth to compute the Signal-to-Noise Ratio
(SNR). The noise generator changes one property, e.g., the
frequency with noise on and off, and the number of threads.
Each frequency or thread number is tested for 100 times with
average values and standard deviations. Here are the imple-
mentation details of three types of noises.

• CPU Noise. The CPU noise is created by a WebAssembly
based CPU intensive program [1] and driven by a Python
code for on and off.

• GPU Noise. The GPU noise is created by two OpenCL
programs (version 1.2): one that calculates random ma-
trix multiplications and the other that does not. Each
matrix in the first program ranges from 2,000×2,000 to
10,000×10,000 with random values between zero and one
and the number of multiplications range from 30 to 50.

• Screen Buffer Noise. The screen buffer noise is created
by two OpenGL programs (version 4.1); one that outputs
random RGB colors to a 500×500 canvas and the other
that does not.

3.2.3 Overall Results

Figure 3 shows the SNR of the rendering contention channel
with different single variables, e.g., the number of threads and
the frequency of CPU, GPU and screen buffer noises. All three
factors contribute to the channel especially under hardware
rendering. We now describe and analyze the detailed results.

Hardware vs. Software Rendering Figures 3a–3d show
the hardware rendering results and Figures 3e–3h software
rendering. GPU does not contribute to the rendering con-
tention channel in software rendering because Figure 3g
shows a flat line. Instead, the CPU’s contribution in Figure 3e
is very large, which can bring SNR below zero dB. As a com-
parison, both GPU and CPU contribute to the contention in
hardware rendering. The contribution of screen buffer exists
in both software and hardware rendering because both need
to display contents on the screen.

Integrated vs. Dedicated GPU Figure 3c shows the SNR
changes when the frequency of GPU noise increases. The
channel on computers with dedicated GPU is more robust to
such noises: The iMac, Windows, and Ubuntu lines (i.e., those
with dedicated GPUs) are above the Mac Pro line (which only
has an integrated GPU).

CPU We have two observations for CPU’s contribution.
First, the robustness against CPU noise depends more on the
number of cores than the operating frequency. For example,
both Figures 3a and 3e show that Mac Pro with more cores
and lower frequency performs better than iMac. Second, pro-
cesses with fewer threads have less impact on the rendering
contention channel as shown in Figures 3b and 3f even when
the noise frequency is 30 per minute. The reason is that some
idle CPU cores are able to handle the rendering.

Windows vs. Linux The difference between the channel
on Windows and Linux systems is small on hardware ren-
dering but relatively larger on software rendering (although
still being smaller those caused by different CPUs and GPUs).
The reason might be that the scheduling performed by OSes
on CPU is heavier than GPU.

4 SIDER: Rendering Contention Framework
In this section, we describe our general attack framework,
SIDER, in reducing the noise level of the rendering contention
channel. We adopt two steps, smoothing and normalization,
for the denoising. The first step is to smooth the data and re-
duce unexpected high-value noises collected in the raw data;
the second step is to normalize the raw data and mitigate diver-
sity and noise introduced by different browsers and hardware
environments.

We now present the algorithm details in Algorithm 1. The
input of this denoising algorithm is the raw data collected
directly from the rendering side channel and the output is the
normalized sequence. The raw data is first being smoothed
(Lines 6–14): Particularly, SIDER adopts a sliding window
and applies smooth filter, such as an average filter, to all the
data points in the window (Line 10).

Then, the smoothed data is being normalized (Lines 15–24)
to standard values irrelevant to the rendering environments.
The high-level idea is as follows. We find the top, say 5%,
values within the smoothed data, calculate the average, and
then use it as the top reference value (Line 16). Similarly, we

Algorithm 1 Denoising
Input: rawSeq
Output: normSeq
1: procedure DENOISING(rawSeq)
2: slicedSequence← Slice(rawSeq, startFrame, endFrame)
3: smoothedSeq← Smooth(slicedSequence)
4: normSeq← Normalize(smoothedSeq)
5: return normSeq
6: function SMOOTH(rawSeq)
7: smoothedSeq← []
8: frameNumber← smoothWindow ÷ 2
9: repeat

10: smoothedValue← Filter(rawSeq, frameNumber, smoothWindow)
11: smoothedSeq.push(smoothedValue)
12: frameNumber++
13: until frameNumber > (rawSeq.length - SmoothValue ÷ 2)
14: return smoothedSeq
15: function NORMALIZE(smoothedSeq)
16: topNormValue←smoothedSeq.top(percentage) .avg()
17: bottomNormValue← smoothedSeq.bottom(1- percentage).avg()
18: frameNumber← 0, normSeq← []
19: repeat
20: normValue ← (smoothedSeq[FrameNumber] -

bottomNormalizationAverage) ÷ (topNormValue -bottomNormValue) ×
normalizationValue

21: normSeq.push(normValue)
22: frameNumber++
23: until frameNumber = smoothedSeq.length
24: return normSeq

find the rest, i.e., the bottom, say 95% values, calculate the av-
erage, and then use it as the bottom reference value (Line 17).
Next, the original value is normalized based on the top and
bottom reference values (Lines 20–22): The bottom reference
value is converted to zero and the top is normalizationValue,
e.g., 100 (Line 20).

Implementation We implement the background stress task
using a WebGL program, which renders a fixed amount of
fish at random locations rotating together with a background
image in a random speed. The task has many randomness,
such as fish location and rotation speed, which greatly re-
duces caching at all levels during the rendering. Further, the
task involves several rotation components, such as fish and
background image, so that even if only a small amount of the
rendering task is visible, the overall workload still stays stable.
Note that The task has two major parts: self-adjustment and
stable rendering. The former part, i.e., self-adjustment, is to
change and find the number of rendered fish according to the
browser. Specifically, this self-adjustment starts from a ran-
dom number of fish and keeps testing the difference between
the rendering interval and the target via a binary search until
the frame per second (FPS) is within a target range. The latter
part, i.e., stable rendering, is to render this background task
constantly using the number of fish found in self-adjustment.

Result. In this part, we show SIDER’s evaluation results.

• Different Background Stress Tasks. Table 2 shows the SNR
values of different background stress tasks. Both the num-
ber of objects and model types have some but minimum
impacts on the SNR. Random location and texture have
the most impacts on SNR. The reasons are two-fold. First,
random location could reduce caches from the browser,

Table 2: The Shannel’s SNRs of Different Background Tasks.

WebGL project # Objects Model types Location Color SNR (dB)

Rotating objects 20,000 7 random texture 15.1±2.3

Rotating objects 20,000 1 random texture 14.5±2.5

Rotating objects 10,000 7 random texture 14.3±2.2

Rotating objects 20,000 7 fixed texture 9.7±4.4

Rotating objects 20,000 7 random random 5.3±3.2

Two triangles 2 2 fixed random 1.2±4.2

0

25

50

75

100

0

25

50

75

100

N
o

rm
a

li
z
e

d
 s

c
a

le

0 50 100 150 200 250 300

Num ber of Fram es

0

25

50

75

100
Youtube

QQ

Google

Figure 4: Denoised Rendering Patterns for Figure 1, i.e.,
Google, QQ, and Youtube in Tor Browser Observed from
a Chrome Window through the Rendering Contention Chan-
nel. Note that we observe that each peak in the denoised curve
maps to an event captured by the performance tool.

the underlying software or the hardware, which improves
the task’s stability. Second, texture introduces a variety
of floating point operations, which could reduce the time
differences from different operations [7].

• Denoising. In this part, we evaluate the denoising effec-
tiveness of SIDER. First, we apply SIDER on Figure 1 and
show the denoised rendering patterns in Figure 4. The scale
of the Figure 4 is normalized to values between 0 and 100
and here we use binary values as an example. It is worth
noting that we manually checked the performance tool’s
results and found that each peak in the figure maps to a
rendering event, such as rendering of a logo or an image.

Second, we intentionally introduce contention noises from
CPU, GPU, and screen buffer and evaluate how SIDER
reduce different kinds of noises. Figure 5 shows the de-
noising results on different machines with software and
hardware rendering. The denoising results are mostly con-
sistent across noises caused by contentions on different
hardware. When the noise level increases, the denoising
from SIDER also becomes more effective, i.e., the SNR
difference before and after denoising increases more. In
some cases, e.g., the CPU noise in Figure 5a, SIDER can
double the SNR from 5 dB to 10 dB.

Table 3: A high-level summary of target events in four attacks
using the rendering contention channel.

Attack Target Event

Cross-browser cookie sync An adversary-specified task
History sniffing Loading of a target page by the adversary
Website fingerprinting Loading of a target page by the user
Keystroke logging Loading of an autocomplete textbox

5 Rendering Channel Attacks
In this section, we describe how to use SIDER to launch four
different attacks using the rendering contention channel. A
high-level summary of different target events is shown in
Table 3 and an overview of four attacks is shown in Figure 6.
We now describe these attacks.

5.1 Attack One: Cross-browser cookie synchronization

Our first attack is a covert, one-way communication channel
between different browsers or modes of the same browser,
e.g., normal and incognito. Such an attack can be used to syn-
chronize tracking cookies belonging to a given domain across
browser or mode. Specifically, we describe two use cases of
this synchronization. First, DoubleClick, a third-party track-
ing website, keeps a cookie associated with user’s behavior
for targeted advertising on one browser. When the user opens
another browser to visit webpages with DoubleClick, Dou-
bleClick synchronizes the tracking cookie across browsers
to still deliver targeted ads. Second, NYTimes uses cookies
to limit the number of free articles for a user during a month.
The user visits NYTimes in the incognito mode to avoid be-
ing tracked. This covert communication enables NYTimes to
synchronize the cookie across modes, thus still tracking the
number of free articles of the user.

5.1.1 Attack Design

The attack design is shown in Figure 6.(a): The sender
and the receiver first establish a connection based on a pre-
negotiated protocol and then transmit data via the convert
channel. Specifically, there are two important layers other
than the raw channel and SIDER, which are (i) Connection
Establishing and (ii) Encoding and Error Correction. First,
SIDER establishes a connection so that both parties need to
know the start time of the communication as the channel al-
ways exists. The sender renders a specific sequence of bit
stream as a start and the receiver only starts to record informa-
tion if the given bit stream is observed. Second, SIDER adopts
error detection and correction encoding, such as Hamming
code, to further reduce errors caused by noises. Specifically,
the high-level idea of Hamming code is that the valid code
always has a certain self-editing distance from each other and
therefore some changes to a code, if being smaller than one
half of the distance, can be corrected. All the communication,
including the establishing pattern, are all encoded in a certain
Hamming code.

0 6 12 18 24 30

Frequency (per m inute)

0

5

10

15

20

S
N

R
 (

d
B

)

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

Denoised

Orignal

(a) Mac Pro (Hardware rendering)

0 6 12 18 24 30

Frequency (per m inute)

0

5

10

15

20

S
N

R
 (

d
B

)

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

Denoised

Orignal

(b) iMac (Hardware rendering)

0 6 12 18 24 30

Frequency (per m inute)

0

5

10

15

20

S
N

R
 (

d
B

)

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

Denoised

Orignal

(c) Windows (Hardware rendering)

0 6 12 18 24 30

Frequency (per m inute)

0

5

10

15

20

S
N

R
 (

d
B

)

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

Denoised

Orignal

(d) Ubuntu (Hardware rendering)

0 3 6 9 12 15

Frequency (per m inute)

0

5

10

15

20

S
N

R
 (

d
B

)

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U
Denoised

Orignal

(e) Mac Pro (Software rendering)

0 3 6 9 12 15

Frequency (per m inute)

0

5

10

15

20

S
N

R
 (

d
B

)

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

Denoised

Orignal

(f) iMac (Software rendering)

0 3 6 9 12 15

Frequency (per m inute)

0

5

10

15

20

S
N

R
 (

d
B

)

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

Denoised

Orignal

(g) Windows (Software rendering)

0 3 6 9 12 15

Frequency (per m inute)

0

5

10

15

20

S
N

R
 (

d
B

)

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

S
c
re

e
n

 B
u

ff
e

r

G
P

U

C
P

U

Denoised

Orignal

(h) Ubuntu (Software rendering)

Figure 5: Signal-to-Noise Ratio (SNR) before and after denoising on different machines.

SideR

Raw Rendering Channel

Connection Establishing

Encoding

Sender Receiver

011010… 011010…

Raw Rendering Channel

SideR

attacker.com

target.com or one

with similar
contents

1st trace

2nd trace
kth trace

the same: visited
di erent: unvisited

Raw Rendering Channel

SideR

attacker.com
trace

target.com
target.com

O ine traces

Raw Rendering Channel

SideR

attacker.com
trace

keyword
google.com

O ine traces

User typing

(a) Cross-browser or mode cookie sync (b) history sni ng (c) website ngerprinting (d) keystroke logging

Figure 6: An illustration of four attacks using SIDER.

Theoretical Communication Bandwidth We discuss the
theoretical bandwidth of this covert communication. Say we
want to transmit n bits in one frame and the screen refresh
rate is Freqrefresh. We show the theoretical bandwidth in Equa-
tion 2 if we assume the distribution of 0 and 1 is the same
in the communication and the interval between each level
(e.g., 01 and 10 in the example of two bits) is the same as the
refresh interval. r is the ratio of Hamming code.

Bandwidththeory =
Freqrefresh×n

1+2+...+2n

2n

× r = 22.9bits/s (2)

where r = 4/7 for Hamming(7,4) code, Freqrefresh = 60 with
the normal 60 Hz refresh rate, and n = 1 for one bit per frame.

5.1.2 Implementation and Evaluation Results

We implement a prototype of the covert communication,
which pulses the rendering task on and off for a certain amount
of time as the bit zero and one. We then evaluate the communi-
cation between each pair of three browsers (Google Chrome
84, Safari 13 and Firefox 79) as the sender and three plus
Tor Browser 9.0.1 as the receiver. The cross-mode commu-
nication adopts one second as the interval of one pulse, the
cross-browser two seconds, and any communication involv-
ing Tor Browser four seconds. Table 4 shows the experiment
results of transmitting 256 random bits on an MacBook with
Intel HD Graphics 515 1536 MB. All the texts are correctly
transmitted without any error showing the feasibility of the

Table 4: Cross-browser or cross-mode cookie synchronization
of 256-byte random texts between different browser pairs.
Note that (i) the diagonal line means synchronization from
normal to incognito mode, and (ii) we did not include Tor
Browser as a sender because it isolates all third-party cookies.

sender\ receiver Google Chrome Safari Firefox Tor Browser

Google Chrome 1.12 bits/s 0.56 bits/s 0.56 bits/s 0.28 bits/s
Safari 0.56 bits/s 1.12 bits/s 0.56 bits/s 0.28 bits/s
Firefox 0.56 bits/s 0.56 bits/s 1.12 bits/s 0.28 bits/s

attack. Note that we did not include Tor Browser as the sender
due to its strong policy in deleting and isolating cookies.

We would like to point out that the actual bandwidth in
practice is much smaller than the theoretical one. There are
several reasons. First, it is because we cannot perfectly align
the received signal with the sending signal. When the band-
width is lower, even if the alignment has some small errors,
we can still correctly infer the signal. Second, the theoretical
bandwidth assumes that there exists no noise. In practice, the
existence of noise will make actual bandwidth lower accord-
ing to the Shannon limit.

5.2 Attack Two: History Sniffing

In this subsection, we describe our second attack, history
sniffing. The key insight here is that the rendering of a vis-
ited website is different from unvisited ones. The reason is

Algorithm 2 Max-min Outlier Detection
Input: targetSequence, referencePool
Output: True or False
1: function OUTLIERDETECTION(targetSequence, referencePool)
2: max← maximum(referencePool.calcPairDistance(DTW-M))
3: newPool← referencePool∪ {targetSequence}
4: min← min(newPool.calcPairDistance(targetSequence, DTW-

M))
5: if max<min then
6: return True
7: else
8: return False
9: procedure DTW-M(sequenceQ, sequenceC)

10: m← Length(sequenceQ), n← Length(sequenceC)
11: distanceMap← [][]
12: DTWMdistanceMap← [][]
13: for i in 0...m do
14: for j in 0...n do
15: distanceMap[i][j] ← i≥ j ? |sequenceQ[i] -

sequenceC[j]| : maxValue
16: if i = 0 || j = 0 then
17: DTWMdistanceMap[i][j] ← distanceMap[i][j]
18: else
19: DTWMdistanceMap[i][j] ← MinDistance(i, j,

distanceMap, DTWMdistanceMap)

20: return DTWMdistanceMap[m][n]

that modern web browsers cache contents, such as images
and scripts, in memory and disk, for a visited website. Then,
when the browser visits and renders the website again, these
contents are immediately fetched from the cache and become
available so that incremental rendering groups them together
for rendering, making the rendering pattern different from an
unvisited one.

5.2.1 Attack Design

Figure 6.(b) shows a high-level overview of the history sniff-
ing attack. The attacker embeds either the target website or a
website with almost exactly the same contents (i.e., the URLs
of all the images, videos, and other contents are preserved)
but from a different domain as an iframe. We have the second
option because some websites, like Google, disallow itself
to be embedded as an iframe. From a high level, the attacker
loads the target repeatedly for several times (say n) and com-
pares the first unknown loading with the rest (i.e., the loading
of a cached page) using an outlier detection algorithm. If the
first load is different from the rest, the attacker will consider
that the target has been unvisited; otherwise, visited.

Max-min Outlier Detection Algorithm Algorithm 2
shows the algorithm. First, SIDER calculates the maximum
pairwise distance (called max) among the reference group
(Line 2), and then the minimum pairwise distance (called
min) between the target sequence and the reference group
(Line 4). If the max is less than the min (Line 5), it means
that the data samples within the reference group are signifi-
cantly similar to each other, but the target is an outlier (Line
6); otherwise, SIDER cannot differentiate the target from the

reference group and will not consider the target as an outlier
(Line 8).

SIDER adopts a modified version of Dynamic Time Warp-
ing [4], defined as DTW-M, for computing pair-wise distance
between two data sequence Q and C with lengths as n and
m. Specifically, SIDER first creates a matrix with dimensions
of n×m, in which the value of each element (i, j) is the dis-
tance between Qi and C j (Line 15). Then, SIDER finds a path,
W = w1,w2, ...,wk, in this matrix from (1,1) to (n,m) (Lines
16–19) that satisfies the following properties:
• The path starts from (1,1) to (m,n).
• Continuity and monotonic. If wk−1 = (a′,b′), the next step

wk can only be (a′+1,b′), (a′,b′+1) or (a′+1,b′+1).
• Lagging (our modification). Each element (i, j) in the

path must follow i≥ j.
• Minimum summation value (our modification). The sum-

mation of values of the selected path is the minimum among
all possible paths.
Finally, SIDER adopts a dynamic programming algorithm

to calculate the minimum distance at each step (Line 19) and
selects the minimum path in the end (Line 20).

A website rerouting target contents Because some web-
sites, such as Google and Youtube, disallow another website
to embed itself as an iframe and prevent frame busting, we
need to build another third-party website with a different
domain name but being similar to the target. Specifically,
we rely on a proxy to remove such protections, e.g., the
X-Frame-Options header and the Content Security Policy
(CSP) header, and relay all the contents without any modifi-
cation to the client in another domain name. Note that such a
proxied rendering has a similar effect as the original website:
The index page, e.g., those in HTML, is not cached, but other
contents, such as scripts and images, still are.

5.2.2 Experiment Setup

We ask real-world users from Amazon Mechanical Turk to
visit our website for the history sniffing attack. The specific
steps are as follows. First, we ask them to enter incognito
mode for the experiments due to our IRB requirement (See
Section 6). Then, we ask them to install an add-on in the
incognito mode for the verification purpose. Next, we ask
them to visit a selected list of websites from Alexa Top 100.
Lastly, we ask them to visit our attack website for the history
sniffing attack: All the data including the history sniffing
result and intermediate rendering data will be then transferred
back to our server for analysis via the client-side code of our
attack website. It is worth noting that the add-on has two
tasks. It will monitor that (i) the participant to ensure that the
participant has visited the website in our instruction and also
(ii) the participant is in private browsing mode so that browser
histories are cleared. In practice, we do observe participants
who do not install our add-on and we abandoned such data,
but they all follow our instructions if the add-on is installed.
We did not collect browser versions during the experiment

0.5 0.6 0.7 0.8 0.9 1.0
0%

20%

40%

60%

80%

100%

Chrom e

Firefox

Safari

F1 Score

P
e

rc
e

n
ta

g
e

(a) F1-Score

0.5 0.6 0.7 0.8 0.9 1.0
0%

20%

40%

60%

80%

100%

Chrom e

Firefox

Safari

Precision

P
e

rc
e

n
ta

g
e

(b) Precision

0.5 0.6 0.7 0.8 0.9 1.0
0%

20%

40%

60%

80%

100%

Chrom e

Firefox

Safari

Recall

P
e

rc
e

n
ta

g
e

(c) Recall

Figure 7: The CDF graph of F1-Score, Precision and Recall of History Sniffing Attack against Top 100 Alexa Websites (broken
down by Chrome, Firefox, and Safari).

and adopt the number (n) of loading the target webpage as
four in practice.

5.2.3 Evaluation Results

In the experiment, we collected data from 60 browser in-
stances (20 Firefox, 20 Chrome, and 20 Safari) from Amazon
Mechanical Turk after filtering those who do not install our
add-on.

F1-score, Precision, and Recall Figure 7 shows the Cumu-
lative Distribution Function of F1-score, precision and recall
of the history sniffing attack against Top 100 Alexa Websites
on three browsers. The median F1-score is 0.723 on Chrome,
0.763 on Firefox, and 0.750 on Safari. The best performing
website is Baidu, the largest search engine in China, due to
its clear rendering pattern with and without cache. The worst
one is the login page of TMall, because the page is too simple
without much rendering to perform.

There are two things worth noting. First, the performance
of websites that are directly embedded as an iframe is gener-
ally better than those that are rerouted from a third-party due
to, for example, the X-Frame-Options protection because a
third-party website indeed loses some cached contents due to
a different domain name. Second, the performance of web-
sites may differ from browser to browser. For example, the
attack on Amazon, when rerouted via a third-party domain, is
very high on Firefox with 0.947 F1-score, but relatively low
on Chrome with 0.739 F1-score. The reason is that Firefox
tends to group more contents during rendering a cached Ama-
zon, but Chrome group less. This is supposed to be a good
performance feature of Firefox, but somehow also makes it
more vulnerable to the history sniffing attack.

Stealthiness Testing In this part, we evaluate the stealthi-
ness of our history sniffing attack on local machines. Specifi-
cally, we perform three tests: (i) changing the frame size of
the target website from 5%, 20%, 90% to 100% of the screen
width, (ii) changing the frame size of the attack website, and

(iii) partially occluding, making transparent, and introducing
an overlay to the attack website. The results in this evaluation
show that the F1-scores of our history sniffing attack of Top
100 Alexa websites under all stealthy settings are with 1.4%
of the ones under the fully-visible iframe setting.

Over-time Attack Performance In this part, we evaluate
the over-time F1-score of Top 100 Alexa websites on a given
machine with five months difference. The results show that
the attack F1-Score of each website may vary a little, but
stay within 5% range of increase or decrease. Note that we
expect that the performance of the history sniffing attack is
unrelated to time, because we obtain all the traces in real-time
instead of offline. The F1-score differences are mainly caused
by content changes rather than any performance degradation
over time.

Performance vs. the Number of Frames In this part, we
evaluate the attack performance vs. the number of collected
frames for three websites. The result shows a strong correla-
tion. Particularly, we show the F1-Score of the history sniffing
attack in Figure 8 as the number of frames increases of Baidu,
JD and 360. The performance of Baidu is high even if there
are just a small number of frames due to two explicit, early
rendering events. The performance of JD and 360 is low in
the beginning, but jumps at certain number of frames, because
of a differentiable event in the middle of the rendering.

Attacks on Mobile Browsers In this part, we further evalu-
ate the history sniffing attack on mobile browsers. Specifically,
we choose two mobile devices: one Samsung Galaxy Note
9 with Qualcomm AArch 64 Processor rev 13 CPU, Adreno
(TM) 630 GPU and the other iPhone X with Hexa-core 2.39
GHz CPU, Apple GPU. We test the history sniffing attack
on qq.com for ten times with the default browser on both
devices, i.e, Samsung Internet 15 and Safari 14. The attack
succeeds on Samsung Internet (i.e., all ten inferences are cor-
rect), but fails on Safari (i.e., all ten inference results are the

qq.com

40 80 120 160 200 240

Num ber of Fram es

40%

50%

60%

70%

80%

90%

P
e

rc
e

n
ta

g
e

Baidu

Jd

360

Figure 8: F1-Score vs. The number of
frames for Three Websites, Baidu, JD and
360.

2 3 4 5 6

Num ber of Candidate Words

75%

80%

85%

90%

95%

100%

P
e

rc
e

n
ta

g
e

F1 Score

Precision

Recall

Figure 9: Precision, Recall and F1-Score
of Keystroke Attacks using SIDER vs. the
Number of Candidate Words

0 5 10 15 20 25

Defense Noise Level in Fuzzy Tim e(m s)

65%

70%

75%

80%

85%

90%

95%

100%

P
e

rc
e

n
ta

g
e

Chrom e

Firefox

Safari

Figure 10: F1-Score of History Sniff-
ing Attack against Baidu vs. the Defense
Noise Level in Fuzzy Time.

!"#$% &'($'"%)*+ ,*%* ! -

./"0/+$%)/"*+

- -

$")%!

1 1

2!

!!

2"

1

2#

3&45

6$%#$% &/7%8*9

"""

"""

!

$")%" $")%#

./":*%'"*%'

;":/<)"=

2$

>$++

./""':%)/"

Figure 11: DNN Architecture for Website Fingerprinting.

same no matter qq.com is visited or not). The reason is that
Safari separates the iframe cache from the top frame cache
similar to Tor Browser. Note that the rendering contention
channel still exists, but the specific attack on iPhone’s Safari
does not work because of the caching policy. We believe that
such cache separation is a good strategy in defending against
history sniffing attacks in general.

5.3 Attack Three: Website Fingerprinting

In this subsection, we describe our third attack, website fin-
gerprinting, from design, experiment setup and evaluation.

5.3.1 Attack Design

Figure 6.(c) shows the overall attack design of our website
fingerprinting attack. The attacker’s website locates in a sepa-
rate window from the target, which collects data using SIDER
from the rendering channel and then compares the collected
data with several offline traces at the server side to decide the
target. We now describe our DNN-based outlier detection at
the server side for fingerprinting.

DNN-based Outlier Detection We design the architecture
of our DNN for two important properties: (i) support of se-
quential data with varied length, and (ii) support of combina-
tion of multiple side-channels. Our detailed DNN architecture
is shown in Figure 11, which accepts denoised data as input
and outputs a classification result of a website name. SIDER
provides multiple convolutional layers with max pooling and

then an LSTM layer for each side channel, and then uses one
flatten and one concatenate layer to combine outputs from all
the channels. Then, SIDER adopts one dropout and one dense
layer after the concatenate layer to output the final, combined
result. Note that the concatenate layer also supports simple
channels like loading time: For example, SIDER adopts two
dense layers to incorporate loading time to concatenate with
other channels.

5.3.2 Experiment Setup

We now describe how we collect our offline traces and how
to conduct the website fingerprinting during runtime. Note
that we use Chrome 84, Firefox 79, and Safari 13 in this
experiment.

Offline Traces We collect our dataset following the state-
of-the-art methodology [49] with closed- and open-world
settings. All the data are collected from a MacBook Pro i5-
7360U LLC 4 MB with Intel Iris Plus Graphics 640.

• Closed-world setting. Datasets in this setting consist of
100 traces each for 100 websites.
• Open-world setting. Datasets in this setting consist of the

closed-world dataset plus 4,675 other webpages, leaving
more possibilities than the closed-world setting. Note that
the original code from Shusterman et al. [49] only collects
4,675 other pages rather than 5,000 as stated in the paper.

Online Attack Setting We run the website fingerprinting
attack on an Alienware Aurora R7 Intel Core i7-8700k LLC
12MB with NVIDIA GeForce GTX 1080 and Windows 10.
The attack website collects top 100 Alexa website data and
then sends the data back to a server for the attack.

5.3.3 Evaluation Results

We evaluate same-browser, cross-browser and over-time per-
formance of website fingerprinting in this part.

F1-Score, Precision and Recall of Same-browser Attack
We evaluate the F1-Score, Precision and Recall of (i) render-
ing contention channel, (ii) cache occupancy [49], and (iii)

qq.com

0.0 0.2 0.4 0.6 0.8 1.0
0%

20%

40%

60%

80%

100%
Com bined

Rendering Content ion Channel

Cache Occupancy Channel

F1 Score

P
e

rc
e

n
ta

g
e

(a) F1-Score

0.0 0.2 0.4 0.6 0.8 1.0
0%

20%

40%

60%

80%

100%
Com bined

Rendering Content ion Channel

Cache Occupancy Channel

Precision

P
e

rc
e

n
ta

g
e

(b) Precision

0.0 0.2 0.4 0.6 0.8 1.0
0%

20%

40%

60%

80%

100%
Com bined

Rendering Content ion Channel

Cache Occupancy Channel

Recall

P
e

rc
e

n
ta

g
e

(c) Recall

Figure 12: The CDF graph of F1-Score, Precision and Recall of Website Fingerprinting Attack against 100 Websites in a
Closed-world Setting (the 100 website list and the setting configuration are from Shusterman et al. [49]).

0.0 0.2 0.4 0.6 0.8 1.0
0%

20%

40%

60%

80%

100%
Com bined

Rendering Content ion Channel

Cache Occupancy Channel

F1 Score

P
e

rc
e

n
ta

g
e

(a) F1-Score

0.0 0.2 0.4 0.6 0.8 1.0
0%

20%

40%

60%

80%

100%
Com bined

Rendering Content ion Channel

Cache Occupancy Channel

Precision

P
e

rc
e

n
ta

g
e

(b) Precision

0.0 0.2 0.4 0.6 0.8 1.0
0%

20%

40%

60%

80%

100%
Com bined

Rendering Content ion Channel

Cache Occupancy Channel

Recall

P
e

rc
e

n
ta

g
e

(c) Recall

Figure 13: The CDF graph of F1-Score, Precision and Recall of Website Fingerprinting Attack against 100 Websites in an
Open-world Setting (the 100 website list and the setting configuration are from Shusterman et al. [49]).

the combined with two channels running simultaneously. Fig-
ure 12 shows the closed-world result and Figure 13 the open-
world. In the closed-world setting, the medium F1-Score is
0.703 for the combined channel, 0.683 for the rendering con-
tention and 0.609 for the cache occupancy; in the open-world
setting, the medium F1-Score is 0.746 for the combined, 0.690
for the rendering contention, and 0.667 for cache occupancy.
The combination of two channels improves the performance
of website fingerprinting.

It is worth noting that the capabilities of rendering con-
tention and cache occupancy channels are different. The
rendering contention channel is good at fingerprinting web-
sites with high rendering load, such as video websites and
those with abundant visual contents, while the cache oc-
cupancy is good at those websites with high computation
tasks, e.g., JavaScript calculations. For example, rendering
contention channel (R) outperforms cache occupancy (C)
in yandex.com (R: 96.3%, C: 88.2%) and ltn.com.tw (R:
96.8%, C: 87.0%); by contrast, cache occupancy outperforms
rendering contention in askcom.me (R: 82.8%, C: 88.9%) and
wittyfeed.tv (R: 80.0%, C: 96.3%). Note that all numbers
in the previous sentence are in the open-world setting.

Table 5: Performance of SIDER and cache occupancy in cross-
browser website fingerprinting of 100 sites in the closed-
world setting.

Cross-browser Channel Accuracy F1-Score Precision Recall

Chrome→Firefox Rendering contention 82.0% 66.0% 78.6% 56.9%
Cache occupancy 52.0% 47.2% 52.0% 43.0%

Chrome→Tor Browser Rendering contention 74.1% 57.8% 69.4% 49.5%
Cache occupancy 42.8% 40.4% 49.5% 34.1%

Chrome→Safari Rendering contention 80.2% 64.6% 79.6% 54.5%
Cache occupancy 57.9% 54.8% 81.6% 41.3%

Performance of Cross-browser Attack We evaluate the
performance of cross-browser website fingerprinting with
two settings: (i) an adversary website located in Chrome
launching the attack against visited website in Firefox, and
(ii) an adversary website located in Chrome launching
the attack against visited website in Tor Browser. Table 5
shows the performance of the cross-browser website fin-
gerprinting (Chrome→Firefox, Chrome→Tor Browser, and
Chrome→Safari). Note that the cross-browser attack perfor-
mance against Tor Browser is on par with the same-browser
attack on commercial browsers. That is, even if users adopt

yandex.com
ltn.com.tw
askcom.me
wittyfeed.tv

Table 6: Overtime F1-score of SIDER and cache occupancy in
website fingerprinting of 20 sites in the closed-world setting.

Channel Day #1 Day #7 Day #64

Rendering contention 88.2% 82.2% 67.4%
Cache occupancy 89.0% 83.4% 60.3%

Tor Browser with a high security level, the behaviors on Tor
Browser can still be inferred as long as that the user keeps
another browser open in the background.

Over-time Performance We evaluate the overtime perfor-
mance of both our rendering and the cache occupancy chan-
nels in terms of F1-score. That is, we collect offline traces
at Day #1 and test the performance with newly crawled data
at Day #X. Table 6 shows the evaluation results. The per-
formance degradation of the rendering contention channel is
similar to the cache occupancy. In the beginning at Day #7,
the performance of the rendering channel degrades a little
bit more than the cache occupancy. Then, at Day #64, i.e.,
two months later, the performance of the rendering channel is
actually 7% better than the one of the cache occupancy. The
reason could be that the rendering channel is more sensitive
to visual content changes, but the cache occupancy is more
sensitive to computational heavy task changes. In a short
term, visual contents may change, but in a long term, website
layouts are preserved.

5.4 Attack Four: Keystroke Logging

In this subsection, we describe the details of our key stroke
logging attack.

5.4.1 Attack Design

Figure 6 illustrates the keystroke logging attack. When a user
types in a search word in a search engine, such as Google,
the attack will collect the runtime data and send it back to a
server. Then, the server compares the data with precollected
data to infer the keyword following Monaco [40].

5.4.2 Experiment Setup

We adopt a keystroke dataset collected by a research
group [18] and adopted by other research papers [40]. The
dataset shows over 100k users typing excerpts from the En-
ron email corpus and English gigaword newswire corpus.
We adopt the Github repository provided by Monaco to pre-
process the data, e.g., separating words, and choose popular
keywords typed by different people as our dataset. We then
simulate the typing with an add-on that inputs keywords fol-
lowing the interval specified in the dataset. SIDER is running
on another window to collect performance data. All the ex-
periments of the keystroke logging attacks are performed on
a Dell machine installed with Windows 10 and Chrome 84.

5.4.3 Evaluation Results

Figure 9 shows the precision, recall and F1-Score of this
keystroke logging attack when the number of candidate key-
words increases. As expected, when the number of keywords
is small, e.g., two and three, and those keywords different
from each other, the attack’s F1-Score is very high. However,
when the number of keywords increases and some keywords
are similar to each other, e.g., with similar length, the attack’s
F1-Score drops significantly to around 70%. We would like to
point out that keystroke logging is the weakest attack among
three because the rendering event is relatively short and the
number of collected frames is relatively small.

6 Discussion
In this section, we describe several commonly-raised issues.

Ethics. We have obtained IRB approval before conducting
the research. The communication between our group and IRB
committee mainly focuses on two things: (i) whether our ex-
periment will obtain private information, and (ii) whether the
user is aware of our attack. First, one IRB reviewer is con-
cerned that if a user is logged into his Facebook or Google
Account, the information on his or her page may contain
private information. We explained to the reviewer that our
experiment is performed in private browsing mode and all
cookies are cleared by default. Second, one IRB reviewer is
concerned that we may conceal our data collection and there-
fore we explicitly show all the iframes in the attack without
occlusion or transparency. In the end, we have obtained an
“Exempt” decision for this project.

Limitations. We discuss several limitations of the render-
ing contention channel when it is used for four attacks. First,
while cookie synchronization, history sniffing, and keystroke
logging are unrelated to the time, the performance of website
fingerprinting degrades over time because website contents
may change. Our evaluation in Section 5.3 shows that the
performance can at least last for a week. Second, while Tor
Browser is vulnerable to cross-browser website fingerprint-
ing and covert communication as a receiver, the performance
for other attacks, e.g., history sniffing, is limited because Tor
Browser deletes caches and cookies during every start and
does not share them between third-party domains. The “Safer”
security level further limits the attack types, because it makes
WebGL click-to-play; at the same time, the aforementioned
two attacks also work in the “Safer” security level. Third, our
rendering contention channel requires that web browser ren-
ders contents on the screen. That is, although a user can switch
to another window like incognito mode, another browser, or
even another application like Word, the user cannot switch to
another tab too quickly for the same-browser attack scenario.
The reason is that modern browsers optimize performance
and stop rendering for an inactive tab.

Other Influential Factors and Factor Breakdowns. It is
worth noting that although we identify that CPU, GPU and

screen buffers are contributing factors of the rendering con-
tentions channel, it might still be some other factors that we
did not test using our single variable testing. We will leave it
for the future work to explore all other possible factors. Simi-
larly, we will leave the breakdown of CPU and GPU factors,
e.g., ALU, CPU cache, GPU core, and GPU cache, as our
future work.

7 Possible Defenses
In this section, we discuss possible defenses against the ren-
dering side channel and corresponding framework, SIDER.
There are two traditional methods in defending against timing
attacks: fuzzy and deterministic time. The former, like Tor
Browser and Fuzzyfox [30], reduces timer resolution and adds
jitters, while the latter, like DeterFox [12], makes the timer
tick based on a deterministic event.
Fuzzy Time. We first discuss and evaluate the effectiveness
of fuzzy time in defending against SIDER. Although modern
browsers have already reduced their timer precision, the pre-
cision especially on commercial browsers is still relatively
high, e.g., 1 ms. In this part, we mimic the behaviors of exist-
ing defenses by introducing a larger noise and reducing the
resolution to the similar level. Then, we evaluate F1-Score of
history sniffing attack of existing websites, e.g., Baidu, and
show the results of three commercial browsers in Figure 10.

There are three things worth noting here. (i) It requires a
relatively high-level defense noise, e.g., 10 ms in Figure 10,
in order to influence the performance of SIDER in conducting
history sniffing attack. The reason is that the useful infor-
mation of this rendering side channel is the pattern across
different frames instead of the performance values of each
frame. (ii) The robustness of three commercial browsers are
similar: Chrome needs a high noise level for defense, and Sa-
fari and Firefox are similar. (iii) Theoretically, the background
rendering task can increase the workload to overcome defense
noise, but in practice, SIDER cannot degrade the performance
of browser rendering too much to influence user experience.

Deterministic Time. We now discuss the effectiveness of
deterministic time in defending against SIDER. Since a deter-
ministic timer normalizes the interval between consecutive
frames, SIDER cannot observe any patterns to launch the at-
tack. Therefore, deterministic timer, if implemented correctly,
can defend against rendering contention channel. Specifically,
we evaluated SIDER in DeterFox [12], a research prototype
browser modified from Firefox, with deterministic time. The
workload adjustment of our background rendering task fails
to find an appropriate FPS because the FPS is always a deter-
mined value in DeterFox.

However, deterministic time brings compatibility and func-
tionality issues. Say a WebGL program wants to adjust its
workload dynamically based on the FPS. The FPS measured
using a deterministic timer is always a constant value. That
is, deterministic time sacrifices important WebGL function-

alities for FPS measurement in defending against rendering
contention channel.

8 Conclusion
In this paper, we propose a rendering contention side channel
that stresses the rendering resource abstracted by operating
systems, measures the time taken to render a sequence of
frames, and then infers any co-rendering event of the browser.
We then perform single variable testing and deduce that the
rendering contention channel is caused by a combination of
CPU, GPU, and screen buffer although the detailed break-
down depends on different configurations, e.g., software vs.
hardware rendering. We further designed and implemented an
attack framework, called SIDER, and launched four types of
attacks: cross-browser/mode cookie synchronization, history
sniffing, website fingerprinting and keystroke logging. Our
evaluation shows that all four attacks are feasible in practical
settings.

Acknowledgment
We would like to thank our shepherd, Dr. Sangho Lee, and
anonymous reviewers for their helpful comments and feed-
back. This work was supported in part by National Science
Foundation (NSF) under grants CNS-20-46361 and CNS-18-
54001. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either ex-
pressed or implied, of NSF.

References
[1] Cpu stress test online. https://cpux.net/

cpu-stress-test-online.

[2] Google code home page of configurable ori-
gin policy. http://code.google.com/p/
configurableoriginpolicy/.

[3] Issue 835589: Security: Css paint api leaks visited sta-
tus of links (up to 3k/sec). https://bugs.chromium.
org/p/chromium/issues/detail?id=835589.

[4] [wikipedia] dynamic time warping. https://en.
wikipedia.org/wiki/Dynamic_time_warping.

[5] [wikipedia] incremental rendering. https://en.
wikipedia.org/wiki/Incremental_rendering.

[6] Tor browser, 2017. https://www.torproject.org/
projects/torbrowser.html.en.

[7] ANDRYSCO, M., KOHLBRENNER, D., MOWERY, K.,
JHALA, R., LERNER, S., AND SHACHAM, H. On
subnormal floating point and abnormal timing. In
2015 IEEE Symposium on Security and Privacy (2015),
pp. 623–639.

https://cpux.net/cpu-stress-test-online
https://cpux.net/cpu-stress-test-online
http://code.google.com/p/configurableoriginpolicy/
http://code.google.com/p/configurableoriginpolicy/
https://bugs.chromium.org/p/chromium/issues/detail?id=835589
https://bugs.chromium.org/p/chromium/issues/detail?id=835589
https://en.wikipedia.org/wiki/Dynamic_time_warping
https://en.wikipedia.org/wiki/Dynamic_time_warping
https://en.wikipedia.org/wiki/Incremental_rendering
https://en.wikipedia.org/wiki/Incremental_rendering
https://www.torproject.org/projects/torbrowser.html.en
https://www.torproject.org/projects/torbrowser.html.en

[8] AVIRAM, A., HU, S., FORD, B., AND GUMMADI, R.
Determinating timing channels in compute clouds. In
Proceedings of the 2010 ACM Workshop on Cloud Com-
puting Security Workshop (New York, NY, USA, 2010),
CCSW ’10, ACM, pp. 103–108.

[9] BOOTH, J. Not so incognito: Exploiting resource-based
side channels in JavaScript engines. PhD thesis, 2015.

[10] BUIRAS, P., LEVY, A., STEFAN, D., RUSSO, A., AND
MAZIERES, D. A library for removing cache-based
attacks in concurrent information flow systems. In Inter-
national Symposium on Trustworthy Global Computing
(2013), Springer, pp. 199–216.

[11] CABUK, S., BRODLEY, C. E., AND SHIELDS, C. Ip
covert timing channels: Design and detection. In Pro-
ceedings of the 11th ACM Conference on Computer and
Communications Security (New York, NY, USA, 2004),
CCS ’04, ACM, pp. 178–187.

[12] CAO, Y., CHEN, Z., LI, S., AND WU, S. Deterministic
browser. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security
(2017), pp. 163–178.

[13] CAO, Y., LI, S., WIJMANS, E., ET AL. (cross-)browser
fingerprinting via os and hardware level features. In
NDSS (2017).

[14] CAO, Y., LI, Z., RASTOGI, V., CHEN, Y., AND WEN, X.
Virtual browser: a virtualized browser to sandbox third-
party javascripts with enhanced security. In Proceedings
of the 7th ACM Symposium on Information, Computer
and Communications Security (New York, NY, USA,
2012), ASIACCS, ACM, pp. 8–9.

[15] CHEN, A., MOORE, W. B., XIAO, H., HAEBERLEN,
A., PHAN, L. T. X., SHERR, M., AND ZHOU, W. De-
tecting covert timing channels with time-deterministic
replay. In 11th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 14) (Broom-
field, CO, Oct. 2014), USENIX Association, pp. 541–
554.

[16] CHEN, Z., AND CAO, Y. Jskernel: Fortifying javascript
against web concurrency attacks via a kernel-like struc-
ture. In 2020 50th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN)
(2020), pp. 64–75.

[17] CLARK, S. S., MUSTAFA, H., RANSFORD, B., SOR-
BER, J., FU, K., AND XU, W. Current events: Iden-
tifying webpages by tapping the electrical outlet. In
European Symposium on Research in Computer Secu-
rity (2013), Springer, pp. 700–717.

[18] DHAKAL, V., FEIT, A. M., KRISTENSSON, P. O., AND
OULASVIRTA, A. Observations on typing from 136
million keystrokes. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems
(New York, NY, USA, 2018), CHI ’18, Association for
Computing Machinery.

[19] FELTEN, E. W., AND SCHNEIDER, M. A. Timing at-
tacks on web privacy. In Proceedings of the 7th ACM
Conference on Computer and Communications Security
(New York, NY, USA, 2000), CCS ’00, ACM, pp. 25–32.

[20] GIANVECCHIO, S., AND WANG, H. Detecting covert
timing channels: an entropy-based approach. In ACM
Conference on Computer and Communications Security
(2007), P. Ning, S. D. C. di Vimercati, and P. F. Syverson,
Eds., ACM, pp. 307–316.

[21] GRAS, B., RAZAVI, K., BOSMAN, E., BOS, H., AND
GIUFFRIDA, C. Aslr on the line: Practical cache attacks
on the mmu. In Annual Network and Distributed System
Security Symposium (2017), NDSS.

[22] GULMEZOGLU, B., ZANKL, A., EISENBARTH, T.,
AND SUNAR, B. Perfweb: How to violate web pri-
vacy with hardware performance events. In European
Symposium on Research in Computer Security (2017),
Springer, pp. 80–97.

[23] HUANG, A., ZHU, C., WU, D., XIE, Y., AND LUO,
X. Cross-platform improvement: an adaptive method of
browser history sniffing. In Measurements, Attacks, and
Defenses for the Web (MADWeb) Workshop (2020).

[24] HUISMAN, M., WORAH, P., AND SUNESEN, K. A
temporal logic characterisation of observational deter-
minism. In CSFW (2006), IEEE Computer Society, p. 3.

[25] HUND, R., WILLEMS, C., AND HOLZ, T. Practical
timing side channel attacks against kernel space aslr.
In Proceedings of the 2013 IEEE Symposium on Secu-
rity and Privacy (Washington, DC, USA, 2013), SP ’13,
IEEE Computer Society, pp. 191–205.

[26] JANA, S., AND SHMATIKOV, V. Memento: Learning se-
crets from process footprints. In 2012 IEEE Symposium
on Security and Privacy (2012), IEEE, pp. 143–157.

[27] JEFFERSON, D. R. Virtual time. ACM Trans. Program.
Lang. Syst. 7, 3 (July 1985), 404–425.

[28] KIM, H., LEE, S., AND KIM, J. Inferring browser ac-
tivity and status through remote monitoring of storage
usage. In Proceedings of the 32nd Annual Conference on
Computer Security Applications (2016), pp. 410–421.

[29] KOCHER, P. C. Timing attacks on implementations
of Diffie-Hellman, RSA, DSS, and other systems. In

Proceedings of the 16th Annual International Cryptol-
ogy Conference on Advances in Cryptology (London,
UK, UK, 1996), CRYPTO ’96, Springer-Verlag, pp. 104–
113.

[30] KOHLBRENNER, D., AND SHACHAM, H. Trusted
browsers for uncertain times. In 25th USENIX Security
Symposium (USENIX Security 16) (Austin, TX, 2016),
USENIX Association, pp. 463–480.

[31] KOTCHER, R., PEI, Y., JUMDE, P., AND JACKSON, C.
Cross-origin pixel stealing: Timing attacks using css fil-
ters. In Proceedings of the 2013 ACM SIGSAC Confer-
ence on Computer and Communications Security (New
York, NY, USA, 2013), CCS ’13, ACM, pp. 1055–1062.

[32] LAMPORT, L. Time, clocks, and the ordering of events
in a distributed system. Commun. ACM 21, 7 (July
1978), 558–565.

[33] LEE, S., KIM, Y., KIM, J., AND KIM, J. Stealing web-
pages rendered on your browser by exploiting gpu vul-
nerabilities. In 2014 IEEE Symposium on Security and
Privacy (2014), IEEE, pp. 19–33.

[34] LI, P., GAO, D., AND REITER, M. K. Mitigating access-
driven timing channels in clouds using stopwatch. In
2013 43rd Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), Budapest,
Hungary, June 24-27, 2013 (2013), pp. 1–12.

[35] LI, P., GAO, D., AND REITER, M. K. Stopwatch: A
cloud architecture for timing channel mitigation. ACM
Trans. Inf. Syst. Secur. 17, 2 (Nov. 2014), 8:1–8:28.

[36] LIFSHITS, P., FORTE, R., HOSHEN, Y., HALPERN, M.,
PHILIPOSE, M., TIWARI, M., AND SILBERSTEIN, M.
Power to peep-all: Inference attacks by malicious batter-
ies on mobile devices. Proceedings on Privacy Enhanc-
ing Technologies 2018, 4 (2018), 141–158.

[37] LIPP, M., GRUSS, D., SCHWARZ, M., BIDNER, D.,
MAURICE, C., AND MANGARD, S. Practical keystroke
timing attacks in sandboxed javascript. In European
Symposium on Research in Computer Security (2017),
Springer, pp. 191–209.

[38] LIU, Y., GHOSAL, D., ARMKNECHT, F., SADEGHI, A.-
R., SCHULZ, S., AND KATZENBEISSER, S. Hide and
seek in time - robust covert timing channels. In ES-
ORICS (2009), M. Backes and P. Ning, Eds., vol. 5789
of Lecture Notes in Computer Science, Springer, pp. 120–
135.

[39] MATYUNIN, N., WANG, Y., ARUL, T., KULLMANN,
K., SZEFER, J., AND KATZENBEISSER, S. Magnet-
icspy: Exploiting magnetometer in mobile devices for
website and application fingerprinting. In Proceedings

of the 18th ACM Workshop on Privacy in the Electronic
Society (2019), pp. 135–149.

[40] MONACO, J. V. What are you searching for? a remote
keylogging attack on search engine autocomplete. In
28th USENIX Security Symposium (USENIX Security
19) (2019), pp. 959–976.

[41] MOWERY, K., BOGENREIF, D., YILEK, S., AND
SHACHAM, H. Fingerprinting information in javascript
implementations. In WEB 2.0 SECURITY & PRIVACY
(W2SP) (2011).

[42] MULAZZANI, M., RESCHL, P., HUBER, M., LEITH-
NER, M., SCHRITTWIESER, S., WEIPPL, E., AND
WIEN, F. Fast and reliable browser identification with
javascript engine fingerprinting. In WEB 2.0 SECURITY
& PRIVACY (W2SP) (2013).

[43] NAGHIBIJOUYBARI, H., NEUPANE, A., QIAN, Z.,
AND ABU-GHAZALEH, N. Rendered insecure: Gpu
side channel attacks are practical. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and
Communications Security (2018), pp. 2139–2153.

[44] NING, P., REEVES, D. S., AND PENG, P. On the se-
crecy of timing-based active watermarking trace-back
techniques. IEEE Symposium on Security and Privacy
(2006).

[45] OREN, Y., KEMERLIS, V. P., SETHUMADHAVAN, S.,
AND KEROMYTIS, A. D. The spy in the sandbox: Prac-
tical cache attacks in JavaScript and their implications.
In Proceedings of the 22Nd ACM SIGSAC Conference
on Computer and Communications Security (New York,
NY, USA, 2015), CCS ’15, ACM, pp. 1406–1418.

[46] PANCHENKO, A., LANZE, F., PENNEKAMP, J., EN-
GEL, T., ZINNEN, A., HENZE, M., AND WEHRLE, K.
Website fingerprinting at internet scale. In NDSS (2016).

[47] SABELFELD, A., AND SANDS, D. Probabilistic non-
interference for multi-threaded programs. In Computer
Security Foundations Workshop, 2000. CSFW-13. Pro-
ceedings. 13th IEEE (2000), IEEE, pp. 200–214.

[48] SCHWARZ, M., LIPP, M., AND GRUSS, D. Javascript
zero: Real javascript and zero side-channel attacks. In
NDSS (2018).

[49] SHUSTERMAN, A., KANG, L., HASKAL, Y., MELTSER,
Y., MITTAL, P., OREN, Y., AND YAROM, Y. Robust
website fingerprinting through the cache occupancy
channel. In 28th USENIX Security Symposium (USENIX
Security 19) (2019), pp. 639–656.

[50] SMITH, G., AND VOLPANO, D. Secure information
flow in a multi-threaded imperative language. In Pro-
ceedings of the 25th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (New
York, NY, USA, 1998), POPL ’98, ACM, pp. 355–364.

[51] SMITH, M., DISSELKOEN, C., NARAYAN, S., BROWN,
F., AND STEFAN, D. Browser history re: visited. In 12th
USENIX Workshop on Offensive Technologies (WOOT
18) (2018).

[52] SPREITZER, R., GRIESMAYR, S., KORAK, T., AND
MANGARD, S. Exploiting data-usage statistics for web-
site fingerprinting attacks on android. In Proceedings
of the 9th ACM Conference on Security & Privacy in
Wireless and Mobile Networks (2016), pp. 49–60.

[53] STEFAN, D., BUIRAS, P., YANG, E. Z., LEVY, A.,
TEREI, D., RUSSO, A., AND MAZIÈRES, D. Eliminat-
ing cache-based timing attacks with instruction-based
scheduling. In European Symposium on Research in
Computer Security (2013), Springer, pp. 718–735.

[54] STONE, P. Pixel perfect timing attacks with html5
(white paper).

[55] VAN GOETHEM, T., JOOSEN, W., AND NIKIFORAKIS,
N. The clock is still ticking: Timing attacks in the
modern web. In Proceedings of the 22Nd ACM SIGSAC
Conference on Computer and Communications Security
(New York, NY, USA, 2015), CCS ’15, ACM, pp. 1382–
1393.

[56] VAN GOETHEM, T., VANHOEF, M., PIESSENS, F., AND
JOOSEN, W. Request and conquer: Exposing cross-
origin resource size. In Proceedings of the 21st USENIX
Conference on Security Symposium (2016), Security.

[57] VILA, P., AND KÖPF, B. Loophole: Timing attacks on
shared event loops in chrome. In 26th USENIX Security
Symposium (USENIX Security 17) (2017), pp. 849–864.

[58] VOLPANO, D., AND SMITH, G. Eliminating covert
flows with minimum typings. In Computer Security
Foundations Workshop, 1997. Proceedings., 10th (1997),
IEEE, pp. 156–168.

[59] WANG, D., NEUPANE, A., QIAN, Z., ABU-
GHAZALEH, N. B., KRISHNAMURTHY, S. V.,
COLBERT, E. J., AND YU, P. Unveiling your
keystrokes: A cache-based side-channel attack on
graphics libraries. In NDSS (2019).

[60] WU, S., LI, S., CAO, Y., AND WANG, N. Rendered
private: Making GLSL execution uniform to prevent
webgl-based browser fingerprinting. In 28th USENIX
Security Symposium (USENIX Security 19) (Santa Clara,
CA, Aug. 2019), USENIX Association, pp. 1645–1660.

[61] WU, W., AND FORD, B. Deterministically deterring
timing attacks in deterland. In Conference on Timely
Results in Operating Systems (TRIOS) (2015).

[62] YANG, Q., GASTI, P., ZHOU, G., FARAJIDAVAR, A.,
AND BALAGANI, K. S. On inferring browsing activity
on smartphones via usb power analysis side-channel.
IEEE Transactions on Information Forensics and Secu-
rity 12, 5 (2016), 1056–1066.

[63] ZDANCEWIC, S., AND MYERS, A. C. Observational
determinism for concurrent program security. In 16th
IEEE Computer Security Foundations Workshop (CSFW-
16 2003), 30 June - 2 July 2003, Pacific Grove, CA, USA
(2003), p. 29.

[64] ZHANG, D., ASKAROV, A., AND MYERS, A. C.
Language-based control and mitigation of timing chan-
nels. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’12, Bei-
jing, China - June 11 - 16, 2012 (2012), pp. 99–110.

[65] ZHANG, Y., JUELS, A., OPREA, A., AND REITER,
M. K. Homealone: Co-residency detection in the cloud
via side-channel analysis. In Proceedings of the 2011
IEEE Symposium on Security and Privacy (Washing-
ton, DC, USA, 2011), SP ’11, IEEE Computer Society,
pp. 313–328.

[66] ZHANG, Y., JUELS, A., REITER, M. K., AND RISTEN-
PART, T. Cross-vm side channels and their use to extract
private keys. In Proceedings of the 2012 ACM Confer-
ence on Computer and Communications Security (New
York, NY, USA, 2012), CCS ’12, ACM, pp. 305–316.

	Introduction
	Rendering Contention Channel
	Rendering Contention Channel Attacks
	Rendering Contention Framework

	Related Work
	Existing Side- or Covert-channels
	Defense against Side Channels

	Rendering Contention Channel
	What is the rendering contention channel?
	What is the rendering contention channel's cause?
	Methodology: Single Variable Testing
	Experimental Setup
	Overall Results

	SideR: Rendering Contention Framework
	Rendering Channel Attacks
	Attack One: Cross-browser cookie synchronization
	Attack Design
	Implementation and Evaluation Results

	Attack Two: History Sniffing
	Attack Design
	Experiment Setup
	Evaluation Results

	Attack Three: Website Fingerprinting
	Attack Design
	Experiment Setup
	Evaluation Results

	Attack Four: Keystroke Logging
	Attack Design
	Experiment Setup
	Evaluation Results

	Discussion
	Possible Defenses
	Conclusion

