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Abstract
Perceptual hashing (PHash) systems—e.g., Apple’s Neural-
Hash, Microsoft’s PhotoDNA, and Facebook’s PDQ—are
widely employed to screen illicit content. Such systems gen-
erate hashes of image files and match them against a database
of known hashes linked to illicit content for filtering. One im-
portant drawback of PHash systems is that they are vulnerable
to adversarial perturbation attacks leading to hash evasion or
collision. It is desirable to bring provable guarantees to PHash
systems to certify their robustness under evasion or collision
attacks. However, to the best of our knowledge, there are no
existing certified PHash systems, and more importantly, the
training of certified PHash systems is challenging because
of the unique definition of model utility and the existence of
both evasion and collision attacks.

In this paper, we propose CERTPHASH, the first certified
PHash system with robust training. CERTPHASH includes
three different optimization terms, anti-evasion, anti-collision,
and functionality. The anti-evasion term establishes an upper
bound on the hash deviation caused by input perturbations, the
anti-collision term sets a lower bound on the distance between
a perturbed hash and those from other inputs, and the func-
tionality term ensures that the system remains reliable and
effective throughout robust training. Our results demonstrate
that CERTPHASH not only achieves non-vacuous certification
for both evasion and collision with provable guarantees but
is also robust against empirical attacks. Furthermore, CERT-
PHASH demonstrates strong performance in real-world illicit
content detection tasks.

1 Introduction
Perceptual hashing (PHash) systems—such as Microsoft’s
PhotoDNA [30], Facebook’s PDQ [10], and Apple’s Neural-
Hash [1]—are widely deployed on many platforms to detect
and mitigate the dissemination of illicit content, notably child
sexual abuse material (CSAM), for secure and ethical online
environments in the digital age. Specifically, PHash systems
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convert images into unique hashes for efficient comparison
against databases of known illicit content for filtering, thereby
serving as the fundamental defense mechanism in digital con-
tent moderation.

Although PHash systems are important in illicit content fil-
tering, recent studies [35,41] have found that PHash systems—
no matter if they are based on traditional algorithms or neural
networks—are vulnerable to adversarial perturbations, e.g.,
evasion and collision attacks. On one hand, an adversary can
add small perturbations to an illicit image so that the hash of
the perturbed image significantly diverges from the original,
thus evading content filtering. On the other hand, an adversary
can add perturbations to a legitimate image so that the hash
of the perturbed image coincides with that of an illicit image,
thereby generating false positives to either cause legitimate
content to be filtered or even to overload the PHash systems.
At the same time, if an allowlist is adopted, an adversary can
also add perturbations to an illicit image for a collision with a
hash in the allowlist for bypasses.

Our work aims to bring provable guarantees to PHash sys-
tems against evasion and collison attacks. In classification
models, one provable approach against adversarial perturba-
tions is certified robustness [8, 36]. It provides provable guar-
antees to ensure that adversarial perturbations do not exist
under bounded inputs. The high-level idea is to first train a
robust learning model, e.g., via adversarial training [13,29,44]
or specialized certified training methods [14, 33, 47, 54], and
then verify its robustness using neural network verification
techniques, e.g., α,β-CROWN [23, 38, 39, 43, 52, 55–57].

To the best of our knowledge, there are no prior works on
certifying the robustness of PHash systems. More importantly,
such a certification is challenging: For example, directly ap-
plying adversarial training for a neural network-based PHash
system will cause very loose bounds during certified evalua-
tion. This means the calculated range over which the output
remains stable under perturbed input is extensive, leading to
high certified collision or evasion rates for a given input per-
turbation. This is due to two inherent properties of PHash
systems compared with other learning systems.



First, the utility definition of PHash systems is different
from that of traditional learning models. Traditional learning
models often have a ground truth output, e.g., a label (like
cat vs. dog) or a continuous value (e.g., turning angles for
self-driving cars), but PHash systems do not. That is, the
exact hash outputted by a PHash system for one given image
can be any arbitrary value; instead, the relations between
hashes of different images, e.g., the hash distance of rotated
original images, determine the utility of PHash systems. Such
a different utility definition not only makes training harder, but
also leads to a different utility-robustness trade-off compared
with traditional learning models.

Second, attacks against PHash systems are also diversified
compared with traditional learning models. Unlike classifi-
cation models, where a fixed set of labels are pre-defined
for all inputs, PHash systems are designed to predict distinct
outputs for every perceptually different image in the training
set. As discussed, an adversary may not only evade PHash
systems by drastically changing the PHash values but also
cause collisions with hashes of existing images for either de-
nial of service or bypasses. Given a set of images, one needs
to calculate two certified rates, one for evasion and the other
for collision.

In this paper, we propose CERTPHASH, the first certified
robust PHash system providing provable defense against both
evasion and collision attacks without sacrificing utilities. At a
high level, the certified robustness of CERTPHASH is achieved
via specially designed loss functions during training. They
are built with efficient bound-propagation-based verification
techniques, representing the certified bound of the worst-case
evasion or collision attacks for specified input perturbations.

During training, CERTPHASH addresses the aforemen-
tioned utility and attack diversity challenges via three loss
functions, anti-evasion, anti-collision, and functionality. First,
the anti-evasion loss minimizes the upper bound of the hash
distance between a training set image and its perturbed or
randomly transformed version, ensuring that outputs for the
same input remain similar, even when modified. Second, the
anti-collision loss calculates a lower bound of the distance
between the two hashes from a pair of distinct images within a
training batch, imposing penalties if the hashes from different
inputs stay too close. Lastly, the functionality loss stabilizes
the certified bounds during training and prevents the model
from converging to a suboptimal solution, thus achieving a
good utility.

After robust training, CERTPHASH assesses the certified
evasion and collision bounds for the trained PHash system.
For evasion verification, CERTPHASH first calculates the
bounds on hashes from perturbed images and then identi-
fies instances where the distance between these bounds and
the clean output exceeds a commonly adopted PHash match
threshold [35]. For collision verification, CERTPHASH in-
versely calculates the input bounds of an image given its hash,

and marks instances whose input bounds are overlapped with
the others as certified collisions.

Extensive experiments demonstrate that CERTPHASH can
successfully train a PHash system with 100% certified no-
evasion and 95% no-collision rates with pertubation ∥δ∥∞ ≤
8/255, as opposed to 0.01% certified no-evasion and 0%
no-collision for adversarial training with the same setting,
while effectively maintaining the functionality of PHash. Our
evaluation using empirical evasion and collision attacks also
demonstrates the correctness of the certification. To summa-
rize, we make the following contributions:
• We design and implement the first certified Phash sys-

tems, featuring robust training with novel anti-evasion, anti-
collision, and functionality terms.

• We systematically formulate and address the formal veri-
fication problem for PHash systems, setting a benchmark
for the certified no-evasion and no-collision rates that will
guide future research on the robustness of PHash systems.

• We extensively compare CERTPHASH with established sys-
tems such as Facebook’s PDQ [10], Apple’s NeuralHash,
and Microsoft’s PhotoDNA, which have been either open-
sourced or previously extracted and published by third par-
ties [2, 11, 19]. Our evaluation shows that CERTPHASH
is not only certified robust against both evasion and colli-
sion attacks but also effective in real-world illicit content
detection tasks.

2 Background and Preliminaries
2.1 Perceptual Hashing

Perceptual hashing (PHash) generates hash values from im-
ages to capture their perceptual similarities. A PHash function
f (·) is defined as

f : X →Y (1)

where X represents the domain of input images and Y is the
corresponding output hash space. For any input image x ∈ X ,
the function outputs a hash value f (x) = y ∈ Y . For a hash
y, the set of images generating this hash ({x ∈ X | f (x) = y})
is known as the preimage of y. The goal is to ensure that
images with similar content produce similar hash values, and
hence a match. Images with dissimilar content should produce
different hashes, resulting in a non-match. This is formalized
as:

Definition 1. For any image pair (xi,x j), a match is defined
by a distance function D(·) when D( f (xi), f (x j))≤ ∆y. Con-
versely, a non match is defined as when D( f (xi), f (x j))> ∆y.

Various perceptual hashing systems have been proposed and
deployed. Some are not based on neural networks: for ex-
ample, Microsoft’s PhotoDNA generates a 144-dimensional
numeric hash vector [30], and Facebook’s PDQ produces a
256-bit binary hash [10]. In contrast, Apple uses deep neural
networks for better robustness against benign image modifi-
cations, such as scaling and rotation. The resulting hash from



its NeuralHash system contains a 96-bit binary representa-
tion [1]. However, all of them are vulnerable to adversarial
attacks [35, 41]. This highlights the need for enhanced robust-
ness in PHash systems.

2.2 Attacks on Perceptual Hashing

Evasion Attack. Evasion attacks aim to subtly modify an
image so that its hashed output diverges from the original
hash, while the visual appearance remains largely unchanged.
These modifications can include benign transformations like
rotation, cropping, and JPEG compression, as well as carefully
crafted perturbations designed for more powerful attacks. For
an image xi with its original hash f (xi), an evasion attack
aims to find the modification function, M(·) that achieves the
following:

D( f (xi), f (M(xi)))> ∆y (2)

Existing work reveals that popular PHash systems are vulner-
able to evasion under both benign transformations [15,18,41]
and adversarial perturbations [35, 44, 45, 50, 53]. Specifically,
Struppek et al. [41] demonstrate that NeuralHash can be
evaded with a few pixel modifications. Prokos et al. [35]
show that PDQ and PhotoDNA are vulnerable to the Hop
Skip Jump Attack [7] and sensitive to JPEG compression and
random crops. Jain et al. [18] show that a l2 perturbation of
just radius 0.10 is sufficient to attack PDQ.

Collision Attack. Collision attacks aim to generate a sec-
ond preimage that matches the hash of a target image while
remaining perceptually distinct from it. This is more com-
plex than evasion as it involves not just altering the hash, but
specifically achieving a hash collision with a target. As a re-
sult, previous work often relies on optimized perturbations as
the modification. Given a target image xi and its hash f (xi),
the collision attack is to find a modification function M(·)
such that, starting from another image x j, M(x j) becomes
part of the preimage of all hashes similar to f (xi):

s.t. D( f (xi), f (x j))> ∆y, D( f (xi), f (M(x j)))≤ ∆y (3)

Still, the Phash systems deployed in the real world are all vul-
nerable to collision attacks [15, 18, 21, 35]. Prokos et al. [35]
find collisions on PDQ and PhotoDNA with the perturbation
generated via Monte Carlo gradient estimation [32]; Strup-
pek et al. find collisions on NeuralHash with the perturbation
optimized with gradient.

2.3 Certified Robust Training and Verification

Robust Training. Certified robust training involves mini-
mizing a robust loss derived from a verifier, which represents
the worst-case loss under specified input perturbation settings.
This process is typically applied in classification tasks and
can be formulated as the following min-max optimization
problem:

min
θ

E(x,y)

[︃
max

δ

D( fθ(x+δ),y)
]︃

(4)

Here, fθ is a neural network with parameters θ, x is an input
with ground-truth label y. δ is a perturbation constrained by
ℓp ball of radius ε and D is a distance function. The inner
maximization simulates the adversarial attacks; then, the outer
minimization aims to reduce the worst-case loss of the model
to make it more robust against adversarial perturbations.

Currently, the most efficient and effective method for get-
ting deterministic bounds for general models is Interval Bound
Propagation (IBP) [14, 31, 46]. In IBP training, Balunovic et
al. [4] incorporate these bounds into the training process,
while Xiao et al. [49] add a ReLU regularizer for the stability
of certified bounds. Shi et al. [40] further improve the stability
and accelerate the training. Besides IBP, randomized smooth-
ing [9,24,25,37] offers certified robustness with probabilistic
bounds, though they are computationally expensive as they
require multiple inferences per input to achieve robustness.

Robust Verification. Classic verification assesses whether
a neural network fθ adheres to an output constraint O( fθ,xi)
for all inputs xi ∈ X within a specified domain I, typically
defined as an ℓp-norm ball around the data point xi, such
that I = (x | ||x− xi||p ≤ ε). We treat output constraints and
the set of outputs that satisfy them interchangeably, denoted
as O ⊆ Y when O( fθ,xi) = {y ∈ Y |D(y, fθ(xi))≤ ∆y}. This
process, known as forward verification, guarantees that all
perturbed images within I meet the hash match constraint by
ensuring ∀x∈I : f (x)∈O( f (xi)), thereby providing certified
robustness against evasion attacks. State-of-the-art verifiers
include α,β−CROWN [6, 34, 43, 51, 54, 55], VeriNet [16, 17],
MN-BaB [12], Marabou [20,48], NNenum [3], and NNV [42].

Conversely, Kotha et al. [23] recently introduce the concept
of inverse verification, where given an output constraint O,
the verifier computes a tight over-approximation of the input
domain, that is f−1

θ
(O)⊆ X , which contains all inputs that

can produce outputs satisfying O. This over-approximation
is also referred to as the provable overapproximation of the
preimage.

We see the potential for certified robustness in PHash: for-
ward verification ensures that all perturbed images within a
specified range satisfy the hash match constraint, providing
certified robustness against evasion. Inverse verification, on
the other hand, establishes the provable preimage for a given
hash, ensuring robustness against collisions. However, most
existing certified robustness approaches are tailored to classi-
fication tasks, making it challenging to directly apply them to
PHash, where hash values are treated as a regression problem.

3 Problem Formulation
This section outlines the training of a neural network-based
PHash model and the threat model for CERTPHASH.

3.1 PHash as a Neural Network

To achieve certified robustness through robust training and
verification, we model the PHash system as a neural network
fθ : X → Y with parameters θ. Here, X is the input image



domain, and Y is the output hash domain. We utilize image-
hash pairs (x,y) ∈ (X ,Y) as training data for fθ. The hashes
are output from PDQ, PhotoDNA, or NeuralHash systems.
This formulation aims to replicate the functionality of real-
world PHash systems under a benign setting. (Mis-)matches
are decided by the threshold ∆y (see Definition 1).

3.2 Threat Model

We consider two types of adversaries in our threat model: cer-
tified robustness and empirical robustness. Both adversaries
are assumed to have white-box access to the PHash model
fθ and are capable of crafting perturbations as adversarial
examples (Instead, image transformations like rotations are
tested under a benign setting to evaluate the model’s function-
ality). We provide detailed descriptions of each adversary’s
knowledge, capabilities, and objectives below.

Knowledge. Both adversaries have complete knowledge of
the PHash model, including:
• Model: Full knowledge of the model’s architecture, param-

eters, and weights.
• PHash system: Specific PHash algorithm the model learns

from, including its match threshold that determines whether
images match or not.

Capabilities. Both adversaries have the following three
capabilities, with the key difference in the constraints on per-
turbations:
• Access to allowlist and blocklist: Ability to use images and

their hashes from both the allowlist and blocklist as targets
or sources for attacks.

• Querying the model: Limited numbers of queries to the
model with either original or modified images, access to
intermediate outputs like gradients, as well as the final
output hash.

• Perturbation optimization: They can optimize a perturba-
tion δ and add it to the original images based on model
responses. The difference between two adversaries is on
constraints on δ:
− Certified robustness: Adheres to a predefined perturba-

tion setting during both training and verification, such
as constraining δ within an ℓp ball of radius ε around an
example x.

− Empirical robustness: More flexible perturbation ap-
proach allowing deviations from the training perturbation
type and levels. For instance, an ℓ2 perturbation can be
used even if the model was trained under ℓ∞ norms. The
radius ε is not fixed but is limited by practical consid-
erations like the number of queries and the perceptual
similarity to the original image.

Objectives. The objectives for both adversaries are the same
and focus on evasion and collision. The difference lies in
the perturbation δ: for certified robustness, δ represents the
worst-case perturbation calculated via a verifier. For empirical
robustness, δ is optimized via gradient descent, allowing the

adversary to craft perturbations that maximize the likelihood
of evasion or collision

• Evasion attack: The objective is to subtly modify an im-
age xi so that its hash changes significantly, exceeding the
match threshold, that is D( fθ(xi), fθ(xi +δ))> ∆y. This is
achieved by optimizing a perturbation δ to maximize the
hash distance D under the constraint ∥δ∥p ≤ ε.

• Collision attack: The objective is to take two distinct images
xi and x j, which do not have matching hashes in the benign
setting, and modify them such that their hashes match, i.e.
D( fθ(xi), fθ(x j))≤ ∆y. This is achieved through a carefully
optimized perturbation δ to minimize the hash distance
between the two images while subject to a perturbation
constraint ∥δ∥p ≤ ε.

4 CERTPHASH

4.1 Overview

Key Idea. Given an input image xi ∈X , CERTPHASH aims
to train a model fθ that outputs the perceptual hashing fθ(xi)
with four goals:

• Goal I. [PHash Modeling]: fθ should preserve the PHash
behavior with a clean input, such that fθ(xi)→ yi, where
yi is the hash of xi following the patterns of systems like
PDQ, PhotoDNA, or NeuralHash.

• Goal II. [Evasion Robustness]: fθ should be robust
to evasion attacks with a perturbed input, such that
D( fθ(xi), fθ(xi +δ))≤ ∆y, subject to ∥δ∥p ≤ ε.

• Goal III. [Collision Robustness]: fθ should be robust
to collision attacks with a perturbed input, such that
D( fθ(xi), fθ(x j + δ)) > ∆y, subject to ∥δ∥p ≤ ε and
D( fθ(xi), fθ(x j))> ∆y, where xi and x j are distinct images.

• Goal IV. [Functionality]: fθ should maintain stable bounds
during certified robust training to achieve more reliable
and faster convergence since it relies on bound propagation
through the network. This is crucial when training a PHash
model to generate hashes.

To achieve Goal I, CERTPHASH defines a non-robust loss
Lnon-robust, using hash values from existing PHash systems
as labels for each image xi. During training, CERTPHASH
applies random transformations to enhance the robustness to
benign transformations. For Goal II, CERTPHASH introduces
an anti-evasion term Levasion, which is the upper bound of
Lnon-robust under the worst-case δ. To achieve Goal III, CERT-
PHASH proposes an anti-collision term Lcollision, which cal-
culates the lower bound of the distance between hash outputs
from different images under the worst-case δ and penalizes if
the lower bound exceeds ∆y. For Goal IV, CERTPHASH adds
a functionality regularizer Lfunc to mitigate unstable bounds
and imbalanced contributions from neurons. We evaluate the
importance and necessity of each regularizer in Section 6.5
through ablation studies.
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Figure 1: The CERTPHASH pipeline, consisting of two stages: certified robust training, where multiple loss terms are integrated
into the robust loss L for model training, and PHash verification, divided into evasion and collision verification to ensure output
integrity under perturbations and non-overlapping input bounds, respectively.

Challenges. Unlike classification problems, which typically
focus on a single robustness goal, i.e., minimizing the up-
per bound loss between perturbed outputs and their ground
truth label. CERTPHASH must balance two conflicting ro-
bustness objectives. First, it requires consistent hashes for
identical inputs to prevent evasion. Second, it must generate
unique hashes for different inputs to avoid collisions. Manag-
ing these competing goals needs multiple, carefully balanced
loss terms. Furthermore, unlike classification tasks where
output constraints are simply set by ensuring non-ground
truth probabilities are lower than those of the ground truth
label, CERTPHASH ’s output consists of multiple hash values
without absolute ground truth. Instead, the constraints are
based on distances relative to the original output hashes, re-
quiring stricter calculations. This added complexity demands
stable bounds, which CERTPHASH addresses through the
functionality term inspired by [40], ensuring effectiveness
and reliability.

Overall Pipeline. Figure 1 illustrates the pipeline of CERT-
PHASH, which includes two main stages: certified PHash
training and PHash verification. During the certified robust
training, CERTPHASH incorporates the four aforementioned
goals into multiple loss terms within the robust loss L, train-
ing the model fθ. The PHash verification stage consists of
evasion and collision verification. Evasion verification checks
if, given an input perturbation constraint ∥δ∥p ≤ ε, the output
remains within the PHash match threshold ∆y compared to
the original output. Collision verification assesses whether
the preimage of similar hashes, i.e., f−1

θ
(O( fθ,xi)), does not

overlap with those from another image. We will detail these
two stages in the following sections.

4.2 Certified PHash Training

In this section, we describe our approach to achieving the four
goals of CERTPHASH and address the associated challenges.
We propose a certified PHash training framework for CERT-



PHASH, structured in four key components, each tailored
to specific objective functions to achieve PHash modeling,
evasion robustness, collision robustness, and functionality.
CERTPHASH optimizes a PHash model fθ with parameters θ

using the objective function L defined in Equation 5:

min
θ

L, where L= Levasion +λLcollision +µLfunc (5)

Each term in the loss function is described in the follow-
ing paragraphs. The parameter λ balances the collision term,
while µ balances the functionality term. Note that µ is grad-
ually reduced from its initial value to 0 during the warmup
period. The warmup phase is to schedule ε from 0 to its tar-
get value, ensuring stable bounds. After the warmup, CERT-
PHASH relies on L= Levasion +λLcollision for certified robust
training.

Achieve PHash Modeling. To train a PHash model fθ that
retains the behavior of existing PHash systems while improv-
ing robustness against benign transformations, we employ a
dynamic approach during each training batch. Specifically,
we randomly sample up to n transformations, which are se-
quentially applied to the image, denoted as T ∈ T . Here, T
includes transformations from three categories: geometric
transformations (including rotation, cropping, and flipping),
color transformations (including changes to hue, brightness,
contrast, and saturation), and compression transformations
(such as JPEG compression). We assign equal probabilities to
processing an original image without any transformation and
to applying up to n transformations to ensure the model rec-
ognizes both clean and transformed images. The parameter n
represents the maximum number of possible transformations,
with the actual number applied varying randomly within the
range (0,n].

For illustration simplicity, we denote both transformed and
original images as T (x), where T is an identity transformation
for the latter. The objective function Lnon-robust, also known
as non-robust (regular) loss, is formalized as

Lnon-robust = ∥ fθ(T (x))− y∥1 (6)

Achieve Evasion Robustness. CERTPHASH achieves eva-
sion robustness by solving the robust optimization problem
outlined in Equation 7. Unlike empirical adversarial training,
which addresses the inner maximization through adversarial
attacks without guaranteeing a worst-case δ, CERTPHASH
uses a robust verifier, such as α,β-CROWN, employing IBP
with tighter linear relaxation to solve this maximization veri-
fiably.

As a result, Lnon-robust serves as a certified upper bound for
this optimization, which covers the worst-case perturbation
scenario. The outer minimization in Equation 5 then reduces
the loss between the output hash of the worst-case perturbed
image and its original label, thereby ensuring evasion robust-
ness—both the original and perturbed images produce similar

output hashes.

Levasion = Lnon-robust, where

Lnon-robust ≥E(x,y)∈(X ,Y)

[︃
max

∥δ∥p≤εtarget
∥ fθ(T (x)+δ)− y∥1

]︃
(7)

Achieve Collision Robustness. To enhance collision ro-
bustness, CERTPHASH adds a collision loss Lcollision, as de-
fined in Equation 8. This loss penalizes scenarios where the
pairwise distance L∆y between hashes from different images
in the current batch falls below the match threshold ∆y. The
goal is to help distinct images yield distinct hashes.

Similar to Levasion, the inner maximization problem is
solved by a verifier. However, for collision robustness, the
worst-case perturbation minimizes the distance between pre-
dictions, in contrast to Levasion where it maximizes the loss.
This minimum distance, noted as L∆y , serves as the certified
lower bound on distances between each pair of hashes. Keep-
ing this lower bound above ∆y is important, as any smaller
distance suggests a potential collision.

Lcollision = ReLU(∆y −L∆y), where

L∆y ≤E(xi,x j)∈X

[︃
min

∥δ∥p≤εtarget
∥ fθ(T (xi)+δ)− fθ(T (x j)+δ)∥1

]︃ (8)

Achieve Functionality. Certified robust training typically
starts with a perturbation schedule, where the model initially
trains with Lnon-robust, and gradually increases the perturba-
tion radius from zero to the target value, εtarget. This helps
stabilize the certified bounds during training and prevents the
model from converging to a suboptimal solution, which is
thus important in maintaining the functionality of the model.
We add two regularizers, Lt and Lr, to shorten the training
and enhance the tightness of bounds. Each hidden layer in fθ,
denoted as hi, has interval bounds defined by hi ≤ hi ≤ hi, sub-
ject to ∀∥δ∥ ≤ ε. The tightness of these bounds, ti = hi −hi,
is controlled by Equation 9. This term penalizes if the current
average bound tightness, E(ti), exceeds the initial average,
E(t0), adjusted by a tolerance factor τ:

Lt = Ei

[︃
ReLU

(︃
τ− E(t0)

E(ti)

)︃]︃
(9)

Equation 10 details the regularization term Lr, which ensures
that both active and inactive ReLU neurons contribute equally
to the model’s performance. This regularization evaluates
balance by comparing the contribution ratios of neurons to
the overall mean and variance of the layer, centered at ai =
(hi +hi)/2. The ideal ratio indicating a balance, denoted as
m for the mean and v for the variance, should approach 1.
Falling below the threshold τ means a significant imbalance,
triggering a penalty:

Lr = Ei

[︃
ReLU

(︃
τ−min

(︃
mi,

1
mi

)︃)︃
+ReLU

(︃
τ−min

(︃
vi,

1
vi

)︃)︃]︃
,

where mi =
∑ j I(hi, j > 0)ai, j

−∑ j I(hi, j > 0)ai, j
, vi =

∑ j I(hi, j > 0)(ai, j −E(ai))
2

∑ j I(hi, j > 0)(ai, j −E(ai))2

(10)



For simplicity in our illustrations, we define the combined
functionality loss term as Lfunc:

Lfunc = Lt +Lr (11)

4.3 PHash Verification

To assess whether CERTPHASH successfully trains a PHash
model fθ that is robust against both evasion and collision at-
tacks, we introduce a PHash verification framework including
evasion verification and collision verification.

Evasion Verification. CERTPHASH verifies that for all per-
turbed inputs xi+δ, where ∥δ∥p ≤ ε, the output hash fθ(xi+δ)
remains within the match threshold ∆y when compared to the
original hash fθ(xi). This verification is based on a specified
distance function D, such as the l1 norm, which is commonly
used in systems like PDQ and PhotoDNA. Formally, we de-
fine a PHash model as robust against evasion if it satisfies the
following condition:

D( fθ(xi), fθ(xi +δ))≤ ∆y, ∀i,δ, where ∥δ∥p ≤ ε (12)

Since fθ(xi) is a constant, this condition can be easily veri-
fied if we know the bounds of fθ(xi +δ). We present fθ as a
computational graph, with nodes corresponding to mathemat-
ical operations (e.g., ReLU) and edges defining the computa-
tion flow. Bounds, representing guaranteed output ranges, are
propagated through the graph from the input (xi + δ where
∥δ∥p ≤ ε) to intermediate outputs and ultimately to the final
layer. Various bound propagation methods can be applied. In
our work, we use interval bound propagation (IBP [14]) and
linear bound propagation (CROWN [57]) methods.

We briefly describe the bound propagation procedure be-
low for unfamiliar readers. The simplest bound propaga-
tion method is IBP, where concrete lower and upper bounds
are propagated on the computational graph, starting from
the inputs to the output. To illustrate with a toy example,
assume fθ contains three linear layers with 1 × 1 (scalar)
weights W (1) = 2, W (2) = 3, W (3) = 4, and ReLU activations
in between. Let (xi + δ) ∈ [−1,2]. The first layer computes
z(1) =W (1) ·(xi+δ), giving lower bound z(1) = 2 ·(−1) =−2
and upper bound z(1) = 2 · 2 = 4. After ReLU, ẑ(1) = 0 and

ẑ(1) = 4. The second layer gives ẑ(2) = 0 and ẑ(2) = 12. Finally,
we get the bounds for fθ(xi +δ) ∈ [0,48].

On the other hand, the linear bound propagation method
propagates a set of linear inequalities, one for the lower bound
and one for the upper bound. We refer the readers to prior
work [38] (Sec. D) for a comprehensive derivation. Linear
bound propagation is more expensive than IBP (yet still quite
efficient) and typically produces tighter bounds.

Collision Verification. CERTPHASH verifies
whether the provably calculated overapproximation
Iover(O, fθ,xi) ⊇ f−1

θ
(O( fθ,xi)) under the constraint

O( fθ,xi) = {y ∈ Y |∥ fθ(xi) − y∥1 ≤ ∆y} does not over-
lap with the over-approximation of another preimage

Iover(O, fθ,x j) ⊇ f−1
θ

(O( fθ,x j)) for a different output hash
under the constraint O( fθ,x j) = {y ∈ Y |∥ fθ(x j)− y∥1 ≤ ∆y}.
Formally, we define a PHash model as verified robust to
collision if it satisfies the following condition:

Iover(O, fθ,xi)∩Iover(O, fθ,x j) = /0,

∀xi,x j ∈ X , s.t. xi ̸= x j and ∥ fθ(xi), fθ(x j)∥1 > ∆y
(13)

Note that the input domain X is infinite; therefore, in our
experiments, we restrict our consideration to xi and x j within
the specified test dataset. To calculate the over-approximation
of the preimage, CERTPHASH computes the bounds on the
input layers by inversely propagating constraints [23] from
the output layers.

5 Experimental Setup
We implement CERTPHASH using Python 3.11 with Pytorch.
All experiments are run on a single NVIDIA A100-PCIE-
40GB GPU with CUDA Version 12.1 and Driver Version
530.30.02. During the certified PHash training and verifica-
tion, we leverage α,β−CROWN along with its integrated
libraries: auto_LiRPA for training and evasion verification,
and INVPROP for collision verification. The default hyper-
parameters employed in our experiments are in Table 1. We
detail our experimental setup in the following sections.

5.1 Baselines

We compare our model with the following baselines:
• PhotoDNA: A PHash algorithm by Microsoft that converts

images into a 144-dimensional numeric vector for detecting
unsafe content.

• PDQ: A PHash algorithm by Facebook that encodes images
into a 256-bit binary vector.

• NeuralHash: A neural perceptual hashing model by Ap-
ple, producing a 96-bit binary vector, used for combating
CSAM.
To enable equal evaluation of PhotoDNA and PDQ under a

verifier that requires a neural network, we also compare two
types of their neural network-based adaptations:
• BASEPHASH: A non-robust neural network trained using

images and their output hashes with only L= Lnon-robust.
• ADVPHASH: An empirical robust neural network trained

with L = Levasion +λLcollision, where δ is empirically cal-
culated with adversarial attacks such as PGD, which is
different from the verifiable worst case δ of CERTPHASH.

5.2 Metrics

We use the following metrics to evaluate the functionality and
robustness of CERTPHASH and other baselines.

Match Threshold. The match threshold, denoted by ∆y, is
used to determine whether two output hashes match. Follow-
ing prior work [5, 35, 41], we set ∆y to 90 for PDQ, 1,800
for PhotoDNA, and 20 for NeuralHash. These thresholds are
calculated using the l1 norm.



Table 1: Default hyper-parameters for CERTPHASH during training and verification. The schedule shows the total number of
epochs, and the epochs are divided into three phases: zero ε, an increase of ε from 0 to εtarget (warm-up schedule), and finally
εtarget.

Dataset ∥δδδ∥ppp ≤≤≤ εεε Training Parameters Verification Parameters
lllppp εεεtarget model lr lr decay factor lr decay milestones schedule epochs nnn (Num TTT (((···)))) λλλ µµµ εεε

COCO
l∞ [1/255, 2/255, 4/255, 8/255] ResNet 5e-4 0.2 [120, 140] 160 (2+80+78) 2 1.0 0.5 [1/255, 2/255, 4/255, 8/255]
l2 [0.05, 0.1, 0.15, 0.2] ResNet 5e-4 0.2 [120, 140] 160 (2+80+78) 2 1.0 0.5 [0, 0.05, 0.1, 0.15, 0.2]

MNIST
l∞ [1/255, 2/255, 4/255, 8/255] CNN-4 5e-4 0.2 [50, 60] 70 (1+20+49) 2 1.0 1.0 [1/255, 2/255, 4/255, 8/255]
l2 [0.05, 0.1, 0.15, 0.2] CNN-4 5e-4 0.2 [50, 60] 70 (1+20+49) 2 1.0 1.0 [0, 0.05, 0.1, 0.15, 0.2]

CelabA and
l∞ [1/255, 2/255, 4/255, 8/255] ResNet 5e-4 0.2 [120, 140] 160 (2+80+78) 2 1.0 0.5 [1/255, 2/255, 4/255, 8/255]

NSFW-56K

ROC-AUC. We use ROC-AUC to evaluate the functional-
ity of a PHash system in non-adversarial settings, focusing
on its ability to correctly identify non-matching hashes for
distinct images and matching hashes for the same images after
benign transformations (T (·), including geometric (rotation,
cropping, flipping), color (hue, brightness, contrast, saturation
changes), and compression (JPEG) transformations.

Each image xi from the dataset X is paired with
its transformed version T (xi) and the transformed ver-
sions of other images T (x j), forming a set of pairs
S = {(x0,T (x0)),(x0,T (x1)), . . . ,(xn,T (xn−1)),(xn,T (xn))},
organized as a set of pairs to eliminate duplicate pairs. True
Positives are defined as the pairs (xi,T (xi)), and True Neg-
atives as pairs (xi,T (x j)) where xi ̸= x j. We calculate dis-
tances for each pair in S, resulting in a distance set M, and
convert these distances into probabilities P using the formula
pi =

1
1+e−k·(∆y−mi)

, where k = 0.01 is the steepness constant,
mi ∈M, and ∆y is the predefined matching threshold. A pair
si is predicted as a match if pi is larger than a threshold.

We then determine the True Positive Rate (TPR) and False
Positive Rate (FPR) at various thresholds to compute the
ROC-AUC. The TPR indicates the system’s efficiency in
identifying images that should match under benign transfor-
mations, reflecting evasion robustness, while the FPR shows
how often non-matching images are incorrectly identified
as matches, reflecting collision risk. The ROC-AUC metric
integrates both collision and evasion into a comprehensive
measure of the PHash model’s functionality.

Certified No-evasion Rate. The evasion rate quantifies how
often perturbed images, with perturbations ∥δ∥p ≤ ε, result
in hash values that deviate from the original hash by more
than the predefined threshold ∆y. This is measured under
an adversarial setting, where δ is carefully crafted to maxi-
mize deviation. The empirical evasion rate (ER) is determined
using empirical attacks such as gradient-based methods. In
contrast, the certified no-evasion rate (CNER) evaluates the
worst-case scenarios using a verifier to determine the maxi-
mum δ that could cause prediction deviation. A 100% CNER
ensures no evasion with the perturbation constraints.

Certified No-collision Rate. The collision rate quantifies
how frequently perturbed images, with perturbations ∥δ∥p ≤ ε,

produce hash values that incorrectly match the hash of a dif-
ferent image, falling below the predefined match threshold
∆y. This evaluation is in an adversarial setting, where δ is
carefully optimized. The empirical collision rate (CR) is de-
rived by selecting a set of target images and then optimizing
δ for source images to make the perturbed source images’
output hashes close to those of the target images. To calculate
the certified no-collision rate (CNCR), we first consider a
set of non-match output hashes { fθ(x0), fθ(x1), . . . , fθ(xn)},
and assign each input the respective output constraint {y ∈
Y |∥ fθ(xi)− y∥1 ≤ ∆y}. We then use a verifier to calculate the
overapproximation of the corresponding preimage. Achieving
a 100% CNCR means there is no overlap in the constrained
preimages for different hash outputs, ensuring no collisions.

5.3 Datasets

We use four datasets to evaluate CERTPHASH: (1) COCO-
2017 [27], resized to 64x64, with 60,000 training and 10,000
verification samples; (2) MNIST, grayscale hand-written dig-
its (28x28), using the original split of 60,000 training and
10,000 verification samples; (3) CelebA [28], resized to
64x64, with randomly selected 50,000 training and 6,000 ver-
ification samples; (4) NSFW-56K [22, 26], resized to 64x64,
with 50,000 explicit images for training and 6,000 for verifi-
cation. Paired with CelebA (safe content), it assesses CERT-
PHASH’s NSFW detection capabilities.

6 Experiment
We answer the following research questions (RQs):

• [RQ1] Can CERTPHASH maintain the hash functionality?
• [RQ2] Can CERTPHASH achieves certified robustness un-

der different constraints?
• [RQ3] How robust is CERTPHASH against empirical eva-

sion and collision attacks?
• [RQ4] How does CERTPHASH perform in a real-world

application (NSFW content detection)?
• [RQ5] How do different parameters affect the performance

of CERTPHASH?
• [RQ6] What are the overhead and scalability of CERT-

PHASH?
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Figure 2: [RQ1] PHash functionality measured by ROC-AUC under different benign transformations.

6.1 Functionality Analysis

In this research question, we use the COCO dataset to com-
pare the ROC-AUC scores of various PHash systems across
nine benign transformations. These transformations fall into
four categories: geometric changes (rotation, cropping, ran-
dom perspective changes, resizing, downsizing, horizontal
flip, vertical flip), color changes (hue, saturation, brightness,
contrast, grayscale), perturbations (random erasing, gaussian
blur, pepper & salt noise), and compression (JPEG). We chose
the COCO dataset for its diverse range of human subjects
and everyday objects, providing a realistic basis for PHash
functionality tests. We evaluate the performance of CERT-
PHASH against PhotoDNA, PDQ, NeuralHash, and our own
trained versions, BASEPHASH and ADVPHASH, all trained

with εtarget = 1/255. The impact of different εtarget values on
system functionality is discussed further in Section 6.5.

Figure 2 presents the functionality results. Overall, CERT-
PHASH achieves a high average ROC-AUC of 0.98 across
16 transformations, outperforming PDQ (0.92), PhotoDNA
(0.93), and NeuralHash (0.84). Specifically, PDQ struggles
with geometric transformations like rotation and cropping;
PhotoDNA is highly sensitive to resizing and color changes,
including brightness and contrast adjustments. NeuralHash,
in particular, performs poorly under high-level transforma-
tions. Among the various transformation types, geometric
transformations pose the greatest challenge to these systems.

We now delve deeper into the functionality performance of
CERTPHASH across four distinct transformation categories:



Geometric. CERTPHASH and ADVPHASH consistently
outperform all competitors. For rotations, CERTPHASH
achieves a ROC-AUC above 0.95 for angles up to 32 degrees
and demonstrates the best performance at near 64 degrees.
In cropping, CERTPHASH scores over 0.99 for crops larger
than 48 (original size: 64) and maintains a score of 0.84 at
size 32. For horizontal flips, CERTPHASH improves perfor-
mance by 1% to 40%, and 2% to 29% for vertical flips. For
random perspective changes with scales ranging from 0.1 to
0.5, ADVPHASH performs the best. CERTPHASH matches
ADVPHASH up to a scale of 0.3 but shows slightly poorer
performance (5%) at a scale of 0.5, though it still outperforms
other systems by 15% to 32%. For resizing and downsiz-
ing, both CERTPHASH and ADVPHASH consistently achieve
ROC-AUC scores greater than 90%.

Color. CERTPHASH, ADVPHASH, BASEPHASH, and PDQ
maintain ROC-AUC scores close to 100% across most color
transformations, except for extreme cases where brightness
and contrast are set to 0, resulting in completely black and gray
images, respectively. PhotoDNA and NeuralHash, however,
are sensitive to larger color transformation values.

Perturbation. CERTPHASH, ADVPHASH, and PhotoDNA
maintain ROC-AUC scores close to 100% under perturbations,
while NeuralHash exhibits significant vulnerability, with per-
formance drops ranging from 10% to 40%.

Compression. CERTPHASH and ADVPHASH outperform
all competitors, particularly at extremely high compression
rates (greater than 92), with performance improvements rang-
ing from 8% to 30%.

Notably, ADVPHASH and CERTPHASH outperform other
systems across most transformations due to two factors: (i)
adding random transformations T (·) during training, as de-
scribed in Section 4.2, greatly enhances the robustness to
many real-world benign transformations, and (ii) applying
anti-evasion and anti-collision loss functions (Equations 7
and 8), ensuring consistent outputs for identical images and
distinct outputs for different ones. In contrast, BASEPHASH
underperforms due to its non-robust standard training with-
out anti-collision or anti-evasion mechanisms. While both
ADVPHASH and CERTPHASH improve robustness to benign
transformations, Section 6.2 shows ADVPHASH is less robust
against adversarial perturbations.

6.2 Certified Robustness Analysis

In this research question, we evaluate CERTPHASH’s certi-
fied robustness under commonly adopted l∞ and l2 pertur-
bation settings with varying levels of perturbations. We use
the COCO dataset with a model trained with PhotoDNA-
generated hashes and the MNIST dataset with a model trained
with PDQ-generated hashes. The results demonstrate that
CERTPHASH consistently achieves up to a 100% certified
no-evasion rate (CNER) and 95% no-collision rate (CNCR),

Table 2: [RQ2-1] Certified No-evasion Rate (CNER) on
COCO and MNIST under different perturbations.

Norm Method + Training εεεtarget CNER↑ under Different Verification εεε

ε = 1/255 ε = 2/255 ε = 4/255 ε = 8/255

C
O

C
O

l∞

BASEPHASH non-robust 97.40% 57.28% 0.00% 0.00%
ADVPHASH 8/255 99.96% 97.44% 40.66% 0.01%

CERTPHASH

1/255 100.00% 100.00% 93.93% 79.51%
2/255 100.00% 100.00% 100.00% 96.14%
8/255 100.00% 100.00% 100.00% 100.00%

ε = 0.05 ε = 0.1 ε = 0.15 ε = 0.2

l2

BASEPHASH non-robust 96.59% 26.37% 0.10% 0.00%
ADVPHASH 0.15 98.85% 95.43% 52.64% 0.00%

CERTPHASH

0.05 100.00% 100.00% 99.72% 98.46%
0.1 100.00% 100.00% 99.98% 99.50%
0.15 100.00% 100.00% 100.00% 100.00%

ε = 1/255 ε = 2/255 ε = 4/255 ε = 8/255

M
N

IS
T

l∞

BASEPHASH non-robust 3.66% 2.43% 0.00% 0.00%
ADVPHASH 8/255 100.00% 99.83% 0.18% 0.00%

CERTPHASH

1/255 100.00% 100.00% 85.75% 0.00%
2/255 100.00% 100.00% 91.68% 0.00%
8/255 100.00% 100.00% 100.00% 99.90%

ε = 0.05 ε = 0.1 ε = 0.15 ε = 0.2

l2

BASEPHASH non-robust 0.00% 0.00% 0.00% 0.00%
ADVPHASH 0.15 0.00% 0.00% 0.00% 0.00%

CERTPHASH

0.05 100.00% 0.00% 0.00% 0.00%
0.1 100.00% 100.00% 100.00% 83.57%
0.15 100.00% 100.00% 100.00% 100.00%

↑ indicates larger is better.

highlighting its robustness against potential adversarial chal-
lenges.

Certified No-evasion Rate. Table 2 compares the Certi-
fied No Evasion Rates (CNER) of CERTPHASH with non-
robust training BASEPHASH and adversarial training AD-
VPHASH. First, CERTPHASH achieves consistently high
CNER (≥99.9%) across all datasets. In contrast, for the
COCO dataset, BASEPHASH performs poorly with a 0%
CNER at ε = 4/255 for l∞ and ε = 0.2 for l2. ADVPHASH
shows a near-zero CNER at ε = 8/255 for l∞ and 0% at
ε = 0.15 for l2. For MNIST, BASEPHASH shows a CNER
of 3.66% at ε = 1/255 for l∞, while ADVPHASH records
0.18% at ε = 4/255. Second, we observe that COCO data
using PhotoDNA is more robust than MNIST with PDQ. This
is due to COCO’s complex structure and deeper model, which
provides a stronger foundation compared to MNIST’s sim-
pler data and shallower architecture. Additionally, COCO’s
144 numeric output from PhotoDNA is less prone to modifi-
cations than MNIST’s 256-bit binary output with PDQ. We
previously noted that PhotoDNA’s functionality also tends to
be more effective than PDQ, likely resulting in better training
labels for COCO.

Certified No-collision Rate. Given the computational com-
plexity involved in deriving inverse input bounds from output
constraints, this experiment was conducted on MNIST (PDQ)
using a four-layer CNN under the l∞ norm (α,β-CROWN
cannot scale to large models for this setting). For all images
in the test set, we compute their hashes. We then compute the
provable overapproximation of the preimages of all similar



Table 3: [RQ2-2] Certified No-collision Rate (CNCR) on
MNIST under different output constraint threshold δy.

Norm Method + Training εεεtarget CNCR↑ under Different δδδyyy

δy = 1 δy = 20 δy = 90

M
N

IS
T

l∞
BASEPHASH non-robust 0.00% 0.00% 0.00%
ADVPHASH 8/255 0.00% 0.00% 0.00%
CERTPHASH 8/255 98.25% 95.72% 95.41%

↑ indicates larger is better.

hashes ({y ∈ Y |∥ fθ(xi)− y∥1 ≤ ∆y} for each original image
xi) To ensure that tight bounds on the preimage can be found,
we limit the input domain to xi ± 96/255, which covers al-
most half of the entire pixel space. We consider images to
have potential collisions if two of those preimages overlap.

Table 3 presents the certified no-collision rates (CNCR) for
BASEPHASH, ADVPHASH, and CERTPHASH, under different
output constraints. BASEPHASH and ADVPHASH encounter a
0% CNCR for all cases due to the bounds being too loose. For
CERTPHASH, the CNCR decreases from 98.25% to 95.41%
until the output constraint relaxes to δy = 90, i.e., the match
threshold for PDQ.

6.3 Empirical Robustness Analysis

In this research question, we assess the empirical robustness of
CERTPHASH in scenarios without input constraints, where an
adversary may employ different perturbation norms without
a predefined level. We follow Struppek et al. [41] to imple-
ment the empirical attacks with PGD [29]. Specifically, We
intentionally allow adversaries to use a different perturbation
norm, specifically the l2 norm, on CERTPHASH trained with
l∞ perturbation. Adversaries increase the l2 perturbation until
the non-robust BASEPHASH achieves nearly 100% evasion
and collision rates with minimal effort, capped at 100 steps.
Note that for MNIST, we pick the initial image pairs from
separate classes, as images from one class tend to be very
similar and are thus very easy to collide for BASEPHASH. We
then establish this l2 norm level as the maximum for both
ADVPHASH and CERTPHASH. We report the evasion rate
(ER), collision rate (CR), average steps to attack, and the l2
perturbation norm during the attack. Additionally, we com-
pute the l∞ norm between x and x+δ post-attack to show the
perturbation in l∞ norm. Our experiments show that CERT-
PHASH maintains a zero evasion rate under empirical attacks
while reducing the collision rate by 80% compared with the
baselines.

Empirical Evasion Attack. Table 4 shows the evaluation
results of CERTPHASH compared with BASEPHASH and
ADVPHASH. Overall, CERTPHASH achieves nearly zero eva-
sion rates (ER) with training εtarget = 8/255. In contrast, AD-
VPHASH still exhibits 68.8% ER for COCO and 19.6% for
MNIST under the same training perturbations. Our observa-
tions include: First, the perturbation level required by empir-
ical attacks exceeds that calculated for certified robustness,
indicating the reliability of our certified ER assessments. Sec-

Table 4: [RQ3-1] Empirical gradient-based evasion attacks
use different attacking (l2) versus training (l∞) perturbations.
We select attack perturbation levels (l2) where BASEPHASH
approaches a near 100% evasion rate (ER) and calculate the
perturbation level using the l∞ norm after the attack. We also
report the average steps required for successful evasion.

Method + Training εεεtarget
Evasion Evaluation Metrics

ER↓ lll2 lll∞ Steps

C
O

C
O

BASEPHASH non-robust 89.24% 3.713 0.033 15.1
ADVPHASH 8/255 68.80% 3.702 0.037 17.8

CERTPHASH

1/255 54.57% 3.701 0.038 16.2
4/255 18.69% 3.702 0.035 19.6
8/255 1.01% 3.713 0.035 32.5

M
N

IS
T

BASEPHASH non-robust 99.12% 2.256 0.098 17.2
ADVPHASH 8/255 19.60% 2.256 0.109 63.1

CERTPHASH

1/255 1.69% 2.426 0.115 88.5
2/255 0.00% — — —
8/255 0.00% — — —

↓ indicates lower is better.

ond, although ADVPHASH is effective in defending against
empirical attacks, it does not guarantee performance, as ev-
idenced by higher empirical ER compared to certified ER.
Third, CERTPHASH requires 2 to 5 times more steps to be
attacked than BASEPHASH, highlighting its robustness under
the scenario even without input constraints.

Empirical Collision Attack. Table 5 presents the collision
evaluations for BASEPHASH, ADVPHASH, and CERTPHASH.
CERTPHASH effectively reduces the collision rate (CR) to
approximately 40% with a minimal training εtarget = 1/255,
and further to about 20% with εtarget = 8/255. For COCO,
ADVPHASH matches CERTPHASH’s performance, but it is
less effective for MNIST, recording a 56.99% CR. We ob-
serve that collisions are more challenging than evasions in
COCO due to the dataset’s diversity, which requires more per-
turbation to match hashes between different images. Figure 3
illustrates a collision example in the COCO dataset. Follow-
ing the methodology in Struppek et al. [41], we initially select
the target image x j from the testing set that has the smallest
output distance to the original image xi. We then optimize
δ according to objective 3.2 using a PGD algorithm [29].
Conversely, collisions happen more easily in MNIST due to
the similar appearance of images, their single-channel format,
and PDQ’s simpler output structure.

6.4 Real-world Application: NSFW Detection

To assess CERTPHASH’s effectiveness in detecting illicit
content, we trained it on 50,000 open-sourced NSFW (Not-
Safe-For-Work) images from NSFW-56k (explicit and unsafe
content) and 50,000 safe images from CelebA, using hash
labels from PhotoDNA. Our evaluation covers functionality
under benign transformations, evasion robustness, and colli-
sion robustness under adversarial perturbations.

Functionality for NSFW. Table 6 presents the ROC-AUC
scores across 9 transformations, with mean and standard de-



Table 5: [RQ3-2] Empirical gradient-based collision attack
use different attacking (l2) versus training (l∞) perturbations.
We select attack perturbation levels (l2) where BASEPHASH
approaches a near 100% collision rate (CR) and calculate the
perturbation level using the l∞ norm after the attack. We also
report the average steps required for a successful collision.

PHash Method with εεεtarget
Collision Evaluation Metrics

CR↓ lll2 lll∞ Steps

COCO

BASEPHASH non-robust 89.75% 10.853 0.099 21.9
ADVPHASH 8/255 21.73% 10.329 0.106 25.1

CERTPHASH

1/255 37.48% 10.841 0.109 24.5
2/255 27.36% 10.616 0.108 22.8
8/255 18.69% 10.742 0.100 24.9

MNIST

BASEPHASH non-robust 100.00% 0.727 0.053 7.2
ADVPHASH 8/255 56.99% 0.710 0.056 12.9

CERTPHASH

1/255 42.56% 0.727 0.051 13.5
4/255 42.06% 0.725 0.059 13.4
8/255 21.36% 0.726 0.051 15.7

↓ indicates lower is better.

(a) Target x j (b) Original xi (c) δ (d) xi +δ

Figure 3: Target and second preimages in collision attacks for
COCO dataset. Figure (a) shows the target preimage, while
figure (d) shows the second preimage that causes a collision,
i.e., producing hash outputs matching the hash of the target
preimage, with figure (b) adding perturbation as shown in
figure (c).

viation calculated for different transformation levels. The test
set included 12,000 images—6,000 NSFW and 6,000 safe.
We compare CERTPHASH with NerualHash, which is claimed
for illicit content detection. The results indicate that CERT-
PHASH maintains strong functionality in NSFW detection,
achieving an average ROC-AUC of 0.914 across all trans-
formations with a training εtarget = 1/255, and 0.911 with
εtarget = 8/255, both outperform NeuralHash, which achieves
an average 0.802 ROC-AUC.

Evasion Robustness for NSFW. Evasion robustness as-
sesses whether NSFW content can still be detected under
perturbations. We focus on the 6,000 NSFW images in the
test set and evaluate the certified no-evasion rate (CNER). Ta-
ble 7 presents the CNER results for the NSFW dataset. CERT-
PHASH achieves 100% CNER with a training εtarget = 8/255,
indicating that it is certified robust to evasion under this per-
turbation level.

Collision Robustness for NSFW. Collision robustness eval-
uates whether perturbed safe images from the 6,000-image
test set of CelebA produce hashes that match one of those
of 6,000 NSFW images, potentially causing false alarms. To
assess this, we employ empirical gradient-based evasion at-

tacks [41]. First, we calculate the target hashes for the 6,000
NSFW images. For each safe image, we identify the closest
NSFW hashes and then optimize the perturbation on the safe
image to make its hash output close to the NSFW one. Table 8
presents the collision rate (CR) under varying levels of attack-
ing perturbation. We observe that CERTPHASH effectively
tolerates perturbations up to 32 times its training range. For
example, when trained with a perturbation of εtarget = 1/255,
CERTPHASH achieves a CR of 2.15% for an attack perturba-
tion of ε= 16/255. Even with a larger perturbation of 32/255,
CERTPHASH maintains a CR of 44.28%. Increasing εtarget to
8/255 further lowers the CR to 21.28%.

6.5 Ablation Study

In this section, we explore the impact of various hyperparame-
ters, including εtarget, n, Lcollision, and Lfunc, on CERTPHASH,
with a focus on functionality under different transformations,
since robustness is more closely tied to εtarget as discussed
in the previous section. Note that CERTPHASH does not re-
quire extensive hyperparameter tuning, as a small set of initial
settings proved effective in various scenarios. We focus on
the True Positive Rate (TPR) and False Positive Rate (FPR)
using the threshold that achieves the best ROC-AUC. This
approach allows us to separately assess the effects of evasion
(reflected by TPR) and collision (reflected by FPR). For each
hyperparameter, we select four values, reporting the mean
and standard deviation of TPR and FPR across the nine be-
nign transformations discussed in Section 6.1. We conduct
these evaluations on the COCO dataset. Figure 4 presents the
results, which we will discuss for each hyperparameter below.

Perturbation level εtarget. We test on the ε =
[1/255,2/255,4/255,8/255]. Overall, the mean TPR
values suggest that the perturbation level εtarget has little
impact on evasion-related functionality, with only a minor
decrease in V-flip performance at higher εtarget levels. As
εtarget increases, the standard deviation of TPR decreases,
indicating more stable performance. FPR remains nearly zero
across most conditions, but a slight increase is observed at
higher perturbation levels (4 and 8) due to the additional
noise introduced during training.

Number of transformations n. We evaluate the impact
of n = [0,1,2,5] on the model’s functionality. Generally, an
appropriate n can enhance TPR, indicating reduced evasion
across different transformations. The TPR is low at n = 0,
especially for geometric transformations, but improves as n
increases to 2. However, the TPR declines at n = 5, likely
because more transformations require additional training time
to converge. Meanwhile, the FPR remains at zero for n =
0,1, and 2, but rises to between 4% and 10% at n = 5. This
suggests that too many transformations during training may
cause outputs to become too similar, potentially requiring a
larger λ to enhance anti-collision robustness.



Table 6: [RQ4-1] NSFW detection functionality by ROC-AUC score for CERTPHASH and NeuralHash, with mean and standard
deviation calculated for different transformation levels.

Method (Training εtarget)
Geometric Color Compression

Angle Crop H-Flip V-Flip Hue Brightness Contrast Saturation JPEC

NeuralHash 0.745 ± 0.143 0.781 ± 0.140 0.599 ± 0.000 0.600 ± 0.000 0.931 ± 0.028 0.865 ± 0.161 0.801 ± 0.119 0.996 ± 0.003 0.902 ± 0.005
CERTPHASH (ε = 1/255) 0.942 ± 0.125 0.909 ± 0.156 0.758 ± 0.000 0.721 ± 0.000 0.999 ± 0.001 0.945 ± 0.121 0.953 ± 0.105 1.000 ± 0.000 0.999 ± 0.001
CERTPHASH (ε = 8/255) 0.928 ± 0.124 0.906 ± 0.152 0.759 ± 0.000 0.716 ± 0.000 0.999 ± 0.001 0.944 ± 0.157 0.948 ± 0.143 0.999 ± 0.001 1.000 ± 0.000
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(a) Magnitude of the training perturbation εtarget
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Figure 4: [RQ5] Ablation Study on hyperparameters ε, n, λ, and µ. We show the mean and standard deviation of true positive rate
(TPR) and false positive rate (FPR) for each transformation at various transformation levels.

Table 7: [RQ4-2] Certified no evasion rate (CNER) of CERT-
PHASH for NSFW Detection.

Method (Training εεεtarget)
CNER↑ under different verification εεε

ε = 1/255 ε = 2/255 ε = 4/255 ε = 8/255

CERTPHASH (1/255) 100.00% 100.00% 100.00% 98.25%
CERTPHASH (8/255) 100.00% 100.00% 100.00% 100.00%

↑ indicates larger is better.

Table 8: [RQ4-3] Collision Rate (CR) by empirical gradient-
based collision attack under varying levels of attacking per-
turbation for NSFW Detection.

Method (Training εεεtarget)
CR↓ under different attacking εεε

ε = 4/255 ε = 8/255 ε = 16/255 ε = 32/255

CERTPHASH (1/255) 0.00% 0.04% 2.15% 44.28%
CERTPHASH (8/255) 0.00% 0.00% 0.04% 21.28%

↓ indicates lower is better.

Balance Term λ for Lcollision. We choose the values as λ =
[0,0.1,1,10] for evaluation. Overall, we observe that Lcollision
effectively reduces FPR, lowering collision risks. At λ = 0,
the FPR is high due to the absence of collision loss in the
robust loss calculations, leading to more collisions. Increasing
λ to 0.1 or higher reduces FPR. The TPR remains consistent
across λ = 0,0.1,1, but drops slightly at λ = 10, especially
for vertical flip transformations. For our experiments, we used
λ = 1 as the default for the collision term, which balances the
trade-off between evasion and collision, resulting in a high
TPR and low FPR.

Balance Term µ for Lfunc. We explore values of µ =
[0,0.2,0.5,1]. Overall, L f unc effectively enhances function-
ality, particularly the TPR under various transformations. We
observe that the TPR for geometric transformations is low
when µ = 0, and it increases as µ rises, with µ = 0.5 showing



Table 9: [RQ6-1] Computational overhead on different datasets using GPU memory usage and training time as metrics.

Dataset
Training time per epoch Total training time GPU memory usage

BASEPHASH ADVPHASH CERTPHASH BASEPHASH ADVPHASH CERTPHASH BASEPHASH ADVPHASH CERTPHASH

MNIST 9 s 31 s 30 s 181 s 2,141 s 2,093 s 2,066 MB 2,068 MB 2,364 MB
COCO 105 s 146 s 133 s 4,214 s 23,406 s 21,249 s 2,080 MB 2,082 MB 2,604 MB
CelabA + NSFW-56K 279 s 328 s 304 s 11,147 s 52,539 s 48,620 s 2,080 MB 2,082 MB 2,604 MB

Table 10: [RQ6-2] Scalability when scaling the model up
from NeuralHash on COCO datasets.

Model Parameter size
Training time per epoch

BASEPHASH ADVPHASH CERTPHASH

ResNet 3M 105 s 146 s 133 s
ResNext 20M 153 s 399 s 360 s
WideResNet 100M 185 s 870 s 566 s

significant improvement—e.g., crop TPR is 20% higher, and
horizontal flip TPR is 50% higher compared to µ = 0. The
performance at µ = 1 is similar to that at µ = 0.5, so we chose
µ = 0.5 as our default setting. The FPR remains at zero across
all values, indicating less impact on collision risk.

6.6 Overhead and Scalability

Overhead. Table 9 compares training time and GPU mem-
ory usage for CERTPHASH, ADVPHASH (adversarial train-
ing), and BASEPHASH (non-robust training) across differ-
ent datasets. For training time, both CERTPHASH and AD-
VPHASH introduce overhead compared to BASEPHASH, as
both involve computing perturbations–verifiable for CERT-
PHASH and empirical for ADVPHASH–and training on per-
turbed data. However, CERTPHASH requires, on average,
0.92x the training time of ADVPHASH for both per-epoch
and total training. GPU memory usage for ADVPHASH and
BASEPHASH is similar, while CERTPHASH requires 1.24x to
1.25x more due to its interaction with the verifier to calculate
worst-case perturbations.

Scalability. Table 10 analyzes the scalability of CERT-
PHASH compared with BASEPHASH and ADVPHASH. We
evaluated models ranging from ResNet with 3M parameters
to WideResNet with 100M parameters. On average, CERT-
PHASH requires 2.3x the training time per epoch compared to
non-robust BASEPHASH, and 0.8x compared to ADVPHASH.
For CERTPHASH, the training time increases as the model
scales up to 20M parameters but maintains a similar level for
models with 100M parameters.

Note that models with 20M and 100M parameters are likely
too large for real-world deployment, as PHash models are typ-
ically small and designed for mobile devices like iPhones and
MacBooks (e.g., Apple’s NeuralHash, which has 2M param-
eters). We believe the 3M ResNet model used in our paper
offers a practical balance between robustness and scalability.

7 Discussion and Limitation
Computational Overhead. Although once trained, our ro-
bust model CERTPHASH benefits users at no extra cost com-
pared to the standard model during hash generation and match-

ing, we acknowledge that robust training introduces computa-
tional overhead during training time. This is a common chal-
lenge when making models robust to adversarial examples:
For instance, adversarial training (i.e., our baseline called
ADVPHASH) also incurs such computational overhead as
shown in Section 6.6. Notably, CERTPHASH is faster than
ADVPHASH in terms of training time. Future work could in-
vestigate verification-friendly neural networks, such as prun-
ing unstable neurons, to minimize computational overhead.

Diversity of Tested Transformations. In addition to evalu-
ating CERTPHASH against gradient-based adversarial exam-
ples, we adopted a set of transformations commonly used in
prior works [35,41] to test PHash’s functionality under natural
manipulations. These transformations span color alterations,
geometric changes, size changes, compression, Gaussian blur,
and random erasing across wide levels, aiming to cover many
real-world scenarios. However, we acknowledge that the pre-
defined set of transformations is inherently limited and cannot
fully represent the unlimited real-world variations. This is a
common challenge in robust hashing research, as predefined
transformations are necessary for comparable results. In fu-
ture work, we will explore methods to further generalize our
approach to cover a wider range of transformations.

8 Conclusion

In this paper, we propose the first certified robust PHash
system, CERTPHASH, designed to offer provable defenses
against evasion and collision attacks in digital content de-
tection. CERTPHASH incorporates a robust training frame-
work that includes multiple novel terms, achieving robustness
through anti-evasion and anti-collision terms, tailored to man-
age worst-case scenario perturbations solved by a verifier.
Additionally, CERTPHASH maintains functionality through
data transformations and carefully balanced loss terms. Fur-
thermore, CERTPHASH sets a benchmark for robustness ver-
ification in PHash systems, featuring metrics such as certi-
fied evasion and collision rates. Extensive evaluations show
that CERTPHASH outperforms existing PHash systems in
robustness without compromising functionality. It also per-
forms effectively in real-world applications, such as detecting
NSFW content, showcasing its practical utility. Overall, our
work aims to provide a strong foundation for bridging the gap
between theoretical certified robustness machine learning and
its practical applications in digital content filtering, and to
encourage further research on certified defense mechanisms.



9 Ethical Considerations

We strictly comply with ethical guidelines and policies in
conducting our research. No human subjects and personally
identifiable information were involved in our research.

The primary purpose of our study is to provide certified ro-
bust solutions to defend against evasion and collision attacks
in PHash systems. To evaluate the effectiveness of our ap-
proach, we adopted previously known attacks [41], which are
also publicly available, to demonstrate the vulnerabilities of
existing PHash systems. Our results show that our approach
effectively defends against these attacks.

Given that PHash systems are deployed in the real world
for detecting CSAM, we utilized public NSFW datasets [22]
to simulate the evaluation of our approach’s effectiveness
in detecting illicit content. It is important to note that our
study does NOT contain any CSAM content. To mitigate
potential harm from NSFW content to the audience, we have
not included any explicit content in our paper. Additionally,
we will not distribute any portion of the NSFW datasets, nor
will we make the models trained on NSFW content publicly
available. In alignment with open science policies, we will
responsibly make the NSFW detection models available upon
request for research purposes only. For models trained on non-
sensitive data such as COCO, we will release them publicly.

To protect the well-being of researchers involved in han-
dling NSFW datasets, our study does not require any man-
ual review of the content; all analyses are conducted using
automatic metrics such as ROC-AUC to avoid exposing re-
searchers to explicit material. Furthermore, we provided sup-
port for the research team by conducting weekly individ-
ual and group check-ins and offering access to therapists
if needed.

10 Open Science

All datasets and PHash systems used in this study are from
publicly available sources. We also strictly comply with the
open science policy by making our implementation and model
available following ethical standards. Our artifact is available
at https://zenodo.org/records/14740844 or https://
github.com/Yuchen413/CertPhash.
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