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especially given that it is a weak means in browser identifi-
cation depending on the entropy. Specifically, adversaries can
change their browser fingerprints to bypass existing defenses.
Say, for example, fingerprints are used to detect bot: If the
number of requests with a certain fingerprint and some other
features (e.g., lower-layer ones like IP) exceeds a threshold, the
client is detected and blocked as a bot. Then, an adversary can
keep changing their fingerprint to avoid being blocked. Such
fingerprints forged by adversaries are thus defined as adversar-
ial browser fingerprints (or for short adversarial fingerprints),
and those traditional fingerprints from user browsers as benign
fingerprints in the paper.

Intuitively, adversarial fingerprints are different from be-
nign ones because their purposes are to defeat defenses. While
intuitively true, the properties of these adversarial fingerprints
in the wild are largely under-studied and unknown to the re-
search community. For example, some open research questions
include but are not limited to the following: (i) how adversarial
fingerprints differ from benign fingerprints in terms of entropy
and features, (ii) what strategies and tools adversaries adopt
to change fingerprints especially for different attacks, and (iii)
how adversarial fingerprints differ from one attack type to
another. The answers to these questions will not only shed
a light on future detection of adversarial fingerprints (and the
associated attacks), but also help researchers to better under-
stand the properties of benign fingerprints for some tracking
purposes like personalized advertisement (where adversarial
fingerprints should be excluded).

State-of-the-art works conducted small-scale (e.g., at most
million-scale) studies for browser fingerprints generally from
three major sources: controlled user groups [48], [48], blindly-
collected website traffic [36], [50], and honeypot website
traffic [53]. However, regardless of their scale, none of prior
measurement work compare adversarial and benign finger-
prints from the same website. Controlled user groups and
honeypot websites only have adversarial or benign fingerprints;
blindly-collected website traffic does not differentiate whether
a fingerprint is benign or adversarial. That is, none of them
answers the aforementioned research questions on the practical
difference between adversarial and benign fingerprints in the
real world as well as the tools and strategies to generate
adversarial fingerprints for different types of attacks.

In this paper, we perform the first billion-scale measure-
ment study of adversarial and benign fingerprints collected
from 14 commercial websites (including major financial insti-

Abstract—Browser fingerprints, while traditionally being used 
for web tracking, have recently been adopted more and more 
often for defense or detection of various attacks targeting real-
world websites. Faced with these situations, adversaries also 
upgrade their weapons to generate their own fingerprints—
defined as adversarial fingerprints—to bypass existing defense 
or detection. Naturally, such adversarial fingerprints are different 
from benign ones from user browsers because they are generated 
intentionally for defense bypass. However, no prior works have 
studied such differences in the wild by comparing adversarial 
with benign fingerprints let alone how adversarial fingerprints 
are generated.

In this paper, we present the first billion-scale measurement 
study of browser fingerprints collected from 14 major commercial 
websites (all ranked among Alexa/Tranco top 10,000). We further 
classify these fingerprints into either adversarial or benign using 
a learning-based, feedback-driven fraud and bot detection system 
from F5, Inc., and then study their differences. Our results draw 
three major observations: (i) adversarial fingerprints are signifi-
cantly different from benign ones in many metrics, e.g., entropy, 
unique rate, and evolution speed, (ii) adversaries are adopting 
various tools and strategies to generate adversarial fingerprints, 
and (iii) adversarial fingerprints vary across different attack 
types, e.g., from content scraping to fraud transactions.

I. INTRODUCTION

Browser fingerprint, an alternative to cookies, is an iden-
tifier consisted of a list of client-side features (such as user 
agent and canvas rendering results) to represent a browser 
instance. While the initial use of browser fingerprint [30] is for 
web tracking, e.g., personalized advertisement (which is often 
considered as a violation of web privacy), recent advances put 
browser fingerprints in a more positive yet defensive role in 
preventing cyber-attacks. For example, Azad et al. [10] show 
that browser fingerprints are used as one important factor 
for bot detection. For another example, Laperdrix et al. [46] 
find that online financial transactions often check browser 
fingerprints to prevent fraud logins and payments.

As always, there exists a tussle between adversaries and 
defenders: This also applies to browser fingerprint as a defense
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tutes, restaurants, and airlines). Specifically, we cooperate with
a security company, F5, Inc.,1 to collect web traffic and classify
traffic using its bot and fraud detection and defense system.
Then, browser fingerprints associated with bot and fraud traffic
are considered as adversarial and the rest as benign. Note that
an external, independent review shows that the bot and fraud
detection system reduces costs caused by account takeover
attacks by 96% and the total number of fake accounts by 92%.

Our measurement happens between January 2021 and June
2021 and results in 36 billion HTTP(s) requests/responses
together with corresponding browser fingerprints from 14
commercial websites. The detection system classifies 42.5%
as bot or fraud (i.e., malicious) traffic with five detailed attack
types and 57.5% as user traffic (i.e., benign). The fingerprints
associated with bot or fraud traffic are considered as adversarial
and those with user traffic as benign. We then compare adver-
sarial with benign fingerprints in terms of different metrics like
evolution and entropy, and analyze the properties of adversarial
fingerprints for generative tools and strategies. For example,
we consider that a fingerprint is generated using a scripting
tool if all JavaScript features are missing, or a virtual machine
(VM) tool if the collected rendering method has consistent
VM-related values. For another example, we consider that
a fingerprint feature of a browser instance is blocked if its
value is empty, or randomized if none of its values appear in
benign fingerprints. Our analysis makes the following three
observations:

• Observation-1: Adversarial browser fingerprints are signifi-
cantly different from benign ones on the same website. Only
1.6% of total unique fingerprints are shared between adver-
sarial and benign and the rest are either adversarial (8.1%)
or benign (90.3%). They also differ from each other in many
aspects, such as evolution speed and entropy. Take evolution
for example. Benign fingerprints tend to evolve over time
as browser instances get updated; by contrast, adversarial
fingerprints are relatively stable because adversaries often
bind fingerprints with compromised accounts and abandon
fake accounts after one-time use.
• Observation-2: Adversaries are adopting different tools to

generate adversarial fingerprints, manifesting varied prop-
erties. Specifically, we summarize three general types of
tools, i.e., scripting, emulated browser (e.g, headless or
full browser), and virtual machine (VM). Scripting tools
are the most popular ones especially in scraping web con-
tents, because of its high efficiency; by contrast, emulated
browsers and VMs are less popular but more powerful in not
only generating adversarial fingerprints but also simulating
benign ones.
• Observation-3: The properties of adversarial browser fin-

gerprints vary from one attack to another. Take content
scraping and fraud transactions for example. Adversarial
fingerprints used in content scraping tend to change very
often yet randomly to avoid being blocked by the website; by
contrast, adversarial fingerprints used in fraud transactions
tend to mimic the characteristics of benign fingerprints and
achieve a higher success transaction rate.

1F5, Inc. serves 48 of Top 50 fortune companies, which include Top 10
global telecommunication operators, Top 30 U.S. commercial banks, Top 10
large global insurance companies, and Top 10 US retail companies.

Because our measurement study involves private user trans-
actions and a paid commercial security product, unfortunately
we have to keep our 36-billion dataset and the bot and fraud
detection system private per our agreement with the security
company. At the same time, in the spirit of open-science, we
are making our fingerprint analysis tool open-source at this
anonymous github repository.2 We would like to encourage
future researchers to use our open-sourced fingerprint analysis
tool and reproduce the results on other websites.

II. BACKGROUND

In this background section, we first describe the definition
of both adversarial and benign browser fingerprint and then
present our threat model. A browser fingerprint is a combina-
tion of browser features collected explicitly or implicitly (like
via a side channel) at a client, such as user agent, WebGL
rendering, and a list of fonts. The traditional definition of
browser fingerprint assumes that it is coming from a user-
controlled browser, thus called benign browser fingerprint.
Being contrary to benign fingerprints, an adversarial browser
fingerprint, or for short adversarial fingerprint, is forged by
an adversary to bypass certain server-side defenses utilizing
browser fingerprints. An adversary can use various tools, e.g.,
scripting tools (e.g., written in Python), emulated browsers
(e.g., automated by Selenium), and virtual machines, to craft
fingerprint features for adversarial fingerprints.

A. Threat Model

Our threat model takes into consideration of attacks that
bypass server-side defenses relying on browser fingerprints.
More specifically, our threat model includes the following
attacks based on their popularity in real-world web traffics:
• Account takeover attempts (i.e., credential stuffing). An

account takeover attempt [11], [67], [76], [82] is that an
adversary try to login a large amount of user accounts with
different username and password combinations that are often
obtained either from underground economy or previous data
leaks. Such an attack is also known as credential stuffing.
• Fraud transaction. A fraud [54], [55], [66]is that an

adversary initiates an unauthorized transaction—e.g., mak-
ing orders, personal loan application, sending/transferring
money, checking out items, and returning ordered items—on
behalf of a victim. Fraud usually happens after a successful
account takeover, although some frauds may not require
account logins.
• Automated fake account signup. Automated fake account

signup is automatic creation of accounts by a bot instead of a
human being. Such accounts, according to prior works [15],
[16], [32], [68], can be used for many malicious purposes,
such as scraping information after the login wall, posting
spam or fake reviews, and signing up extra bonus of the
websites.
• Aggressive content scraping. Aggressive content scrap-

ing [28], [37], [64] is that an adversary crawls a target
website disregarding the rate limit and blacklist documented
in the robot.txt file for their own benefits, e.g., obtaining
a competitor’s information like airline price. Such aggressive
scraping is performed either based on a fake account (called
logged-in) or anonymously (i.e., without login).

2https://github.com/bfpmeasurementgithub/browser-fingeprint-measurement
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Fig. 1. An overall architecture of our measurement methodology.

• Giftcard cracking. Giftcard cracking [1] is a brute force
attack that enumerates all possibilities of giftcard numbers
and tries to spend values before the legitimate user(s).

III. MEASUREMENT METHODOLOGY

In this section, we present our measurement methodology
in characterizing adversarial and benign fingerprints. Figure 1
shows the overall architecture of the measurement, which
has three steps: 0) data collection, 1) traffic analysis, and 2)
fingerprint analysis. Step 0 collects all the raw data including
the entire HTTP(s) requests and responses. Then, the traffic
analysis in Step 1 classifies the HTTP request as either benign
or malicious with detailed attack type. Lastly, the fingerprint
analysis in Step 2 studies the properties of all the fingerprints
together with outputs from Step 1, which leads to our three
core observations.

Let us start from Step 0 of our measurement study. We
cooperate with a security company to collect data from 14
top-ranked target websites (104 subdomains).3 The collection
is performed via both JavaScript implanted into the web
applications of target websites and an SDK on the native
mobile applications of these target. Then, the collected raw
data contains rich information across network-, browser-, and
user-levels. The network-level information contains TCP/IP
headers (e.g., source and destination IP addresses), device
IDs, timestamps, and Source Autonomous System Number
(ASN). The browser-level information mainly contains browser
fingerprints that are broken down into different features, such
as user agent, font list, and canvas images. (Details are shown
later in Section IV-B.) The user-level information includes
account ID and user behaviors (such as visited links).

A. Step 1: Traffic Analysis

Our Step 1, as shown in Figure 2, has two sub-steps: a
learning-based bot and fraud detection/defense (which keeps
accepting feedback from customer and offline system) and an
attack type classification engine.

1) Bot and Fraud Detection/Defense: The bot and fraud
detection/defense platform shown in Figure 2 takes raw data
as inputs and outputs whether a given HTTP request and
response pair belongs to bot or fraud traffic. The key of the
platform is a double-model and double-feedback-loop system
that is robust to, and can quickly recover from, adaptive bot
and fraud attacks. Let us start from the double model. The
platform is equipped with two models: (i) an online, real-time
model that accepts high-performance features selected from

3Due to our agreement as part of the measurement study, we anonymize the
14 companies’ websites (with only the category name) belong to the different
categories thus we can compare the difference.
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Fig. 2. Details of Step 1: Traffic Analysis

TABLE I. A SELECTIVE LIST OF FEATURES USED IN REAL-TIME AND
OFFLINE MODELS

Feature Name Description

R
ea

l-
tim

e
M

od
el

URL URL in an HTTP request

Cookie HTTP cookie

TCP/IP FP TCP/IP fingerprint from TCP/IP stack [2]

IP Address IP address

ASN Autonomous System Number

Username User name in hash value

TLS Fingerprint Extracted from TLS Client Hello message [35]

User Behavior A list of user-behavior pattern, e.g., the presence
of mouse moves, touch moves, and key down/up [85]

O
ffl

in
e

M
od

el

IP Reputation Behavioral quality of an IP address and # of malicious
requests that it sends

ASN Reputation Malice probability of any given active IP in an ASN

User Reputation Percentage of benign/malicious requests per user in history

Device Reputation Percentage of benign/malicious requests per device in history

Header Reputation Header inconsistent rate and percentage of benign malicious
requests per HTTP header [86]

Behavior per session # of user behaviors per HTTP session

feature engineering (i.e., those that can be computed in a short
time) and outputs a decision to target websites, and (ii) an
offline model that accepts all features including slow ones for
a comprehensive decision.

Table I shows a selective list of top important features
used in both real-time and offline models based on their
contributions to the model’s performance. The real-time model
mostly adopts high-performance features that can directly
obtained from a single HTTP request, such as URL, cookie,
TCP/IP fingerprint, and SSL fingerprint. As a comparison, the
offline model uses aggregated statistics of features for many
HTTP requests over a certain time period. Examples are like
the number of benign and malicious request per IP, ASN,
username, device, and HTTP header. Note that we only list a
selective number of features. In practice, the real-time model
has hundreds of features and the offline has thousands (as there
are different combinations of feature aggregation).

Note that the initial training set of the double model before
the double feedback loop is created using a rule-based ap-
proach with human verification. Table II shows a selective list
of metrics used to create such an initial training set. The high
level idea is to filter web traffic based on abnormality and then
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TABLE II. THE INITIAL TRAINING SET CREATION FOR THE
DOUBLE-MODEL BEFORE DOUBLE-FEEDBACK LOOP.

Metrics Abnormality Description

Page view Abnormally high page views traffic than the average
Referrer traffic High referral traffic from uncommon websites
Bounce rate High number of users joining and leaving without activities
Session duration High or low average session duration
Regional traffic Spikes in traffic from a certain region
Content refresh rate High rate of content refreshing
Fake information Fake (random) information like email, phone and name

verify such traffic using human experts. Take session duration
for example. Bots are often automated and therefore may
have a much shorter session duration compared with human
beings. Similarly, bot accounts often use fake information like
a random phone number during registration. Such a training
set is initial and further improved in the double feedback loop.

Now, we describe the double feedback loops. The first
feedback loop is between websites and the real-time model.
That is, if the platform makes incorrect decisions (e.g., bot
as benign or benign as bot) and takes wrong actions, such
feedback will be collected from the target websites, verified
by human experts, and updated to the real-time model during
retraining. The second feedback loop is between the real-time
and offline models. The offline model will make a separate,
(more accurate) decision that is independent of the real-time
model. Then, the offline model’s analysis results are updated
to the dataset repository and thus the real-time model in
the second feedback loop. Note that both the real-time and
offline models are audited by human experts. More specifically,
human experts are involved in the following conditions: (i)
customers (e.g., website users) reporting false positives or
negatives, (ii) discrepancies between real-time and offline
models, and (iii) a massive amount of attacks being reported.
In addition, human experts also sample data samples predicted
with low confidence scores to double check the accuracy of
both models.

The advantage of the double-model and double-feedback-
loop architecture is a great reduction of adaptive bot and fraud
attacks. The reason is that even if an adversary bypasses the
system, the feedback loop can quickly pick the bypass up and
update the real-time model to detect such bypasses. An external
review team examines the bot and fraud detection/defense
product. The examination shows that that the platform product,
in a long term, reduces (i) costs caused by account takeover
attacks by 96% and (ii) the number of fake accounts by 92%.
We would like to point out that although this number is very
high at a first glance, it is actually reasonable and also required
for a paid, commercial product. On one hand, the platform
rarely misclassifies benign traffic; on the other hand, the 4%
of account takeover and 8% of fake accounts (as verified by
the external team) happen only within a very small amount of
web traffic and a small time window and are quickly detected
by the platform afterward.

2) Attack Type Classification: After the first step, we
further classify malicious traffic into five types as described
in our Threat Model (Section II-A). The methodology is
based on important features provided by the bot and fraud
detection/defense platform. We now describe five different
types of attacks and their key features separately. Here are the
details: (i) Account takeover attempt: the number of (incorrect)
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Fig. 3. Details of “Step 2: Fingerprint analysis”.

username and password combinations from a given client, (ii)
Fraud transaction: when and where transactions happened, (iii)
Automated fake account signup: the number of the newly-
created accounts of a client, (iv) Aggressive content scraping:
whether robots.txt is honored during crawling, and (v)
Giftcard cracking: the number of tried giftcards of a client.

B. Step 2: Fingerprint Analysis

Figure 3 shows the overall procedure of our “Step 2:
Fingerprint Analysis”. Specifically, this step has three sub-
steps: statistical analysis (which calculates fingerprint metrics),
generative tool analysis, and generative strategy analysis.

1) Statistical Analysis: In this substep, we calculate the
following metrics and compare adversarial and benign finger-
printing using these metrics.
• K-L Divergence. Kullback–Leibler (K-L) divergence (also

called relative entropy) is a statistical distance measuring
how one probability distribution differs from the other
reference probability distribution. Consider the calculation
of the K-L divergence for a specific feature for two sets of
fingerprints. For each set, we obtain all the values for the
feature and the distribution of the values by calculating the
percentage of each value within the set. Then, we compute
the K-L divergence between two distributions of two sets.
That is, the larger value a K-L divergence is, the more
statistical differences two distributions have. In this paper,
we randomly divide adversarial and benign fingerprints into
two sets and calculate D(adversarial ‖ benign), D(benign
‖ benign), and D(adversarial ‖ adversarial). Each calcula-
tion is repeated ten times with different partitions for the
average value with standard deviation. Note that we use K-
L divergence as a metrics because it can reflect whether
the percentage of feature values differs between adversarial
and benign fingerprints. Say 90% of benign fingerprints uses
Screen Resolution A and 10% uses Screen Resolution B. By
contrast, 10% of adversarial uses A, but 90% use B. Then,
D(adversarial ‖ benign) is 0.76, which is much larger than
zero for identical distributions.
• Normalized Entropy. Normalized entropy,4 a metrics

widely used by prior works [36], [50], is defined in Equa-
tion 1:

NH =
H(X)

HM

=
−ΣiP (xi)log2P (xi)

log2(N)
(1)

where xi represents a fingerprint, P (xi) is the probability of
xi in the dataset, and N is the total number of fingerprints.

4Note that in the context of this paper, “entropy” and “normalized entropy”
are used interchangeably as the same terminology for convenience.
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The larger NH is, the better the feature is in differentiating
different browser instances. We followed the same partition
used in the K-L divergence calculation to compute the av-
erage normalized entropy value with the standard deviation.
• Empty and Unique Rate. Empty rate is the percentage

of fingerprints with an empty value on a certain feature.
Then, unique rate defines the percentage of feature values
or fingerprints that are either only benign or adversarial.

2) Generative Tool Analysis: In this substep, we analyze
adversarial fingerprints and infer the tool that generates these
adversarial fingerprints. Specifically, we describe three general
types of adversarial tools used in the wild and our detection
methodology.
• Scripting tools. Scripting tools are simple applications

(e.g., written in Python) that send HTTP requests to target
websites. On one hand, such tools often cannot implement
complex client functionalities driven by JavaScript, e.g.,
rendering canvas images; on the other hand, they are often
very fast, making them scalable to crawl large amount of
contents. Because scripting tools generally do not support
JavaScript, we detect scripting tools if none of JavaScript
features exists in a fingerprint.
• Emulated browsers. Emulated browsers are those

with extended or modified functionalities, such as head-
less browsers, browsers with extensions, and tailor-made
browsers with modifications, which are often driven by
automated tools like Selenium. Such emulated browsers have
the full capability in simulating all different features of
browser fingerprint. The default tool is an emulated browser
if we cannot determine the tool as scripting or virtual
machine (below).
• Virtual machines. Virtual machines (VMs) driven by

software such as KVM and VMWare are also used in
combination with emulated browsers to emulate real-world
users. Virtual machines are often provided by cloud services
and also being capable of simulating all different fingerprint
features. We detect the generative tool as a VM if the
rendering method in the fingerprint has a consistent VM-
based renderer and vendor.

3) Generative Strategy Analysis: Once an adversary uses a
certain tool, the next step is to choose a strategy in changing
or generating features of the browser fingerprint collected in
the request sent to a target website. In practice, we observe
the following strategies and summarized them below:
• [Keep] Keeping the original fingerprint. The simple strat-

egy from an adversary is to keep the original fingerprint (or
certain feature values) of the tool. Consider content scraping
for example. While this strategy of keeping the original fin-
gerprint increases the chance of the adversary being blocked,
the adversary can still obtain some information under the
request threshold for clients with certain fingerprints. If we
observe only one feature value for a certain browser instance,
we consider that the adversary keeps the value.
• [Block] Blocking certain features in a fingerprint. Another

relatively simple strategy is to block the value of a feature.
Take canvas rendering for example. An adversary can disable
the canvas API in a browser to prevent the target website
from getting a valid value. Such a strategy is somewhat ef-
fective because benign fingerprints also have missing values
especially for some features requiring heavy computations

TABLE III. BREAKDOWN OF BENIGN VS. ADVERSARIAL REQUESTS
BASED ON ATTACK TYPES

Website Benign

Adversarial

Account
takeover
attempts

Fraud Fake
account

Scraping Giftcard
cracking

Anonymous Logged-in

All 57.5% 7.0% 0.8% 0.1% 15.0% 19.6% <0.1%

Rest. A 55.1% 34.5% 3.9% 3.4% - <0.1% 3.1%
Bank A 99.8% 0.2% - - - - -
Bank B 46.4% 52.9% <0.1% 0.7% <0.1% - -
Bank C 86.8% 8.7% 4.0% 0.1% <0.1% 0.4% -
Finance A 75.5% 24.5% - - - - -
Finance B 98.7% 0.1% - - 0.5% 0.6% -
Finance C 77.8% 22.2% - <0.1% - - -
Shop A 91.4% 1.2% 7.3% 0.1% - <0.1% <0.1%
Shop B 48.4% 0.2% 1.0% - 22.5% 27.8% <0.1%
Airline A 79.4% 0.1% - <0.1% 2.6% 17.9% <0.1%
Airline B 80.7% 9.4% - - 3.9% 6.1% -
ISP A 99.8% 0.2% <0.1% - - - -
ISP B 99.5% 0.5% - - - - -
ISP C 86.8% 13.1% - <0.1% - 0.1% -

like canvas rendering and font list. If we observe that the
feature value is missing in a malicious request, we consider
that the adversary blocks the value.
• [Mimick] Mimicking benign fingerprints. One complex

strategy from the adversary is to mimick a different benign
fingerprint in each request to the target website. This is
relatively hard for an adversary because it needs a large set
of benign fingerprints to iterate through for each HTTP(s)
request. If we observe that there are multiple feature values
for one browser instance and all the values also appear in the
benign fingerprints, we consider that the adversary mimicks
the value from benign fingerprints.
• [Randomize] Randomizing certain feature values in a fin-

gerprint. Because mimicking is a relative hard strategy,
some adversaries also adopt another strategy, which ran-
domizes certain feature values. Take the plugin feature for
example. An adversary modifies the plugin API to return a
random list of plugins each time. Note that such generated
adversarial fingerprints will be unique in most cases and
not shared with other benign fingerprints. If we observe that
there are multiple feature values for one browser instance
and none of the values appear in the benign fingerprints, we
consider that the adversary randomizes the value.

Note that there are some gray areas that we cannot
determine the adversarial strategies and we just mark them
as “Gray”. For example, if an adversarial value appears in
the benign fingerprints but the frequency is very small (e.g.,
<0.01% of the feature’s values), we cannot decide whether
benign users also randomize the value (e.g., via a privacy-
preserving browser) or the adversary mimicks a benign user.
Then, we mark such adversarial strategies as gray.

IV. DATASET

In this section, we describe the collected dataset. In total,
we collected 36 billion HTTP(s) requests: 15.3 billion (42.5%
of the total) adversarial and 20.7 billion (57.5% of the total)
benign. We also break down the requests based on 14 websites
in Figure 4. The results show that Bank B and Airline A takes
more than 50% of the total number because of their popularity,
and the rest websites take the other 50%.
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TABLE IV. A LIST OF COLLECTED INFORMATION (META-INFORMATION + BROWSER FINGERPRINT) IN OUR MEASUREMENT STUDY. NOTE THAT ALL
THE NUMBER ARE UNIQUE VALUES COLLECTED FROM OUR STUDY.

Name Description Example # Benign # Adversarial # Combined

HTTP(s) Request Requests to target websites - 20,762,474,611 15,346,176,886 36,108,651,497

Meta-information - - - - -

Traffic type
Benign or malicious (account takeover at-
tempts, content scraping, fake account login,
giftcard cracking, and fraud transactions)

Label 1 5 6

Account ID Anonymized account identifier Hash Value 190,493,755 120,924,767 264,327,700

Destination root(apex) domain The destination root domain name - 14 14 14

Destination sub-domain The destination sub-domain name - 104 98 104

Source IP Source Internet Protocol (IP) address 65.78.121.109 793,682,659 144,209,829 804,622,232

Source ASN Source Autonomous System Number (ASN) 3,356 374,625 204,525 390,238

Browser Fingerprint A combination of all features - 1,537,702,813 162,303,779 1,673,234,835

User-Agent “User-Agent” HTTP header

Mozilla/5.0 (Windows
NT 10.0; Win64; x64)
AppleWebKit/537.36
(KHTML, like Gecko)
Chrome/93.0.4577.82
Safari/573.36

47,744,084 11,845,304 54,614,360

Historical timestamp The String representation of a historical date
and time

Mon Aug 06 1945
08:16:00 GMT+0900
(Palau Time)

6,276 1,536 6,336

Plugins The total number of plugins and the hash
value of all plugins

10, Hash value 5,238,288 1,374,595 6,595,013

Font list Anonymized font list Hash Value 893,115 229,776 1,065,906

Canvas image The hash value of rendering results of a given
image

Hash value 21,626,771 5,715,765 26,338,550

GPU vendor and renderer GPU vendor and renderer

NVIDIA corporation
ANGLE (NVIDA,
NVIDA GeForce GTX
1080)

80,903 8,737 82,074

Screen resolution Screen size, color depth, and available
Height/Left/Top/Width.

1440×900×24, availHeight:
823, availLeft: 0, availTop:
25, availWidth: 1440

575,070 54,756 585,857

devicePixelRatio The ratio of the resolution in physical pixels
to the resolution in CSS pixels

2.1 45,118 2,921 45,168

A. Attack Statistics

Table III shows the breakdown of benign vs. adversarial
requests based on different websites and attack types. Note
that our final attack label of the dataset comes from the
company’s final database combining multiple labelling sources.
That is, the ground truth labels are verified by both the real-
time and offline model and the double-feedback-loop system
with possible manual verification.

The dominant attack types vary a lot for different websites.
For example, content scraping is the most prevalent on Shop
B, Airline A, and Airline B, while account takeover attempts

are the most prevalent on Restaurant A, Bank B, and Finance
A & C. The reason is that shops and airlines usually have
abundant product prices and competitors are eager to obtain
such information. By contrast, banks and restaurants usually
have sensitive customer information so that adversaries want
to compromise them for benefits.

1) Attack Pattern Over Time: We illustrate three examples
to show the adversarial and benign requests over time. Figure 5
shows the number of benign and adversarial requests of Airline
A over the total six-month period. One notable thing is that be-
nign requests are almost uniformly distributed with exceptions
in the month of May and June where people are traveling more
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than winter time and COVID restrictions are partially lifted.
By contrast, adversarial requests are concentrated on certain
dates where adversaries scrape contents, wait for some days,
and do that over again. At the same time, we also show the
number of requests of Restaurant A and Bank A during one-
day period in Figure 6. This shows a different pattern from the
six-month: Adversarial requests are more flat than the benign
ones. The reason is that users are less likely to visit a website
during early morning while adversaries are usually driven by
bots, which do not have such patterns.

B. Browser Fingerprint Collection and Statistics

Table IV shows different types of browser fingerprint
features and their statistics. We skip the details and only list
some descriptions and illustrative examples for each feature in
Table IV, because they are all documented by prior works [46],
[50]. Note that we do not choose some features, e.g., the
support of certain browser functions like cookies, because the
unique values of such features are relatively small, which make
them less practical in a billion-scale study. We also show the
number of unique values of fingerprints and each feature that
are broken down by benign, adversarial and combined requests.
The total number of unique benign fingerprints is more than
nine times larger than that of unique adversarial fingerprints.
That is, although many adversaries are mutating fingerprints
randomly, they did not mutate fingerprints enough to simulate
the behaviors of benign fingerprints. In other words, adver-
saries still have much room to improve for mimicking the
benign fingerprints on the feature level.

There are three things worth noting. First, we compare our
study results with prior million-scale studies [36], [50], [53].
The unique values for each feature is proportionally larger
than those observed in previous study, showing the potential of
using such features in real-world top-ranked websites. Second,
the total number of historical timestamp is larger than the
number of time zones, because the same time zone may be
represented by different names such as “New York Time” and
“Eastern Time”. Lastly, the unique number of plugins and
screen resolution is large. It is because they both contains many
subfields, such as filename, version and suffixes for plugins and
seven numbers for screen resolution.

Takeaway [Billion- vs. Million-scale]: At the billion-
scale (i.e., those being faced by top-ranked commercial
websites), unique values of each fingerprint feature are
proportionally larger than the one observed in previous
million-scale studies [36], [50], [53], showing their
capabilities in real-world uses.

V. OBSERVATIONS

In this section, we describe our three main observations.

A. Observation-1: Adversarial vs. Benign Fingerprints

Our first observation is on the comparison of adversarial
and benign fingerprints.
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Fig. 7. Distribution of Adversarial and Benign Fingerprints by Different
Website Categories

Takeaway [Adversarial vs. Benign Fingerprints]:
Adversarial browser fingerprints generated by attackers
are significantly different from benign ones:
• Only 1.6% of unique fingerprints are shared be-

tween adversarial and benign; by contrast, 8.1% are
purely adversarial and 90.3% purely benign.
• The K-L divergence between adversarial and be-

nign fingerprints is much larger than that between
benign/benign and between adversarial/adversarial.
• Adversarial fingerprints have more empty values

compared with benign.
• Benign fingerprints often evolve over time, while

adversarial ones mostly stay stable.

1) Overview: We first give an overview of adversarial
vs. benign fingerprints by breaking down the percentage of
adversarial, benign and combined in Figure 7. Adversarial
and benign fingerprints are clearly separated: 90.3% are only
benign, 8.1% are only adversarial, and only 1.6% are shared
between adversarial and benign. We also break down finger-
print distributions by different website categories in Figure 7.

There are three things worth noting about the breakdown
by website categories. First, the percentage of adversarial
fingerprints for “Shop”, “Airline”, and “ISP” websites is large
and more than that of adversarial+benign. It is because content
scraping is popular for these website as shown in Table III.
That is, adversaries create many unique adversarial fingerprints
to bypass the scraping threshold enforced by the website.
Second, the percentage of adversarial+benign fingerprints for
“Restaurant”, “Bank”, and “Finance” is larger than that of
adversarial fingerprints. The reason is that account takeover
attempts are generally popular for these websites, where ad-
versaries need to either mimick existing benign fingerprints or
use a real browser with benign fingerprints to take over user
accounts and then maybe launch fraud transactions. Lastly, the
percentage of benign + adversarial fingerprints is much smaller
than that of benign fingerprints for all websites. There are
two reasons. First, the absolute number of adversaries is much
smaller than that of benign users. Therefore, the adversaries
do not own a large number of benign fingerprints. Second, it is
likely that adversaries do not have a large database of benign
fingerprints to emulate.

2) K-L Divergence: Table V shows the K-L divergence
of each feature and the combined fingerprint. We have three
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TABLE V. COMPARISON BETWEEN ADVERSARIAL AND BENIGN FINGERPRINTS ON DIFFERENT METRICS

Feature Name Kullback-Leiber Divergence Empty rate Normalized Entropy Unique rate

D(Adv.‖ Benign) D(Benign‖Benign) D(Adv.‖Adv.) Benign Adv. Benign Adv. Benign Adv.

User-Agent 1.6±1.2 0.8±1.8 1.9±1.6 <0.1% <0.1% 3.8±0.5 3.0±0.6 89.6% 58.0%
Timestamp 4.2±5.6 0.5±0.6 2.0±1.5 2.1% 64.4% 1.8±0.3 1.5±0.7 76.5% 3.9%
Plugins 2.1±1.9 0.4±0.3 1.6±1.3 4.4% 46.3% 1.4±0.3 2.2±3.0 99.6% 98.7%
Font list 2.2±1.5 0.8±1.8 1.9±1.5 11.8% 50.1% 2.6±0.7 2.4±1.9 93.6% 75.2%
Canvas image 2.7±1.5 0.9±1.9 1.9±1.5 4.5% 46.6% 2.3±0.4 1.7±0.8 95.3% 82.4%
vendor + renderer 5.7±2.8 0.8±1.7 2.5±2.5 1.4% 86.2% 4.0±1.4 2.0±1.3 90.7% 13.4%
Screen resolution 5.3±3.0 0.4±0.3 2.2±1.5 0.1% 43.1% 4.6±1.2 2.5±1.3 92.3% 19.7%
devicePixelRatio 5.7±4.9 0.9±1.6 2.4±2.5 0.0% 82.4% 2.1±1.2 1.2±0.5 93.6% 1.7%
IP 1.7±0.9 0.4±1.7 1.6±2.3 0.0% 0.0% 1.4±0.3 1.3±0.5 83.2% 7.6%
ASN 3.6±1.5 2.0±1.9 3.0±1.4 0.0% 0.0% 3.7±0.6 3.4±0.5 49.6% 7.6%

Fingerprint 3.8±1.9 0.5±0.5 0.2±0.6 0.0% <0.1% 10.7±1.6 7.0±2.8 98.3% 83.5%
Fingerprint + IP&ASN 2.6±2.0 0.1±0.2 0.01±0.1 0.0% 0.0% 13.6±1.6 9.1±2.1 97.8% 61.6%

observations. First, D(benign ‖ benign) is always smaller than
1. That is, benign fingerprints are similar to each other. Second,
D(adversarial ‖ adversarial) of combined fingerprint (with
or without IP and ASN) is small, indicating the similarity
among adversarial fingerprints. Interestingly, D(adversarial ‖
adversarial) of each individual feature is always larger than 1.5
(and sometimes 2). This is because although adversaries drasti-
cally change one fingerprint feature, other features mostly stay
untouched, leading to a small combined K-L divergence value
but a large value for separate features. Third, D(adversarial ‖
benign) is generally larger than D(adversarial ‖ adversarial)
except for the “User-Agent”. That is, the difference between
adversarial and benign fingerprints is lager than that between
adversarial themselves on the feature and combined level.

3) Empty Rate: Table V also shows the empty rate of each
fingerprint feature. The empty rate of adversarial fingerprints is
larger than that of benign fingerprints for all the features. The
reason is that when adversaries use scripting tools, JavaScript
features will have empty values. It is worth noting that benign
requests may also have empty values mainly because of two
reasons. First, the user may close the tab before the finger-
print collection finishes. Our platform incrementally transfers
collected fingerprint features, resulting in empty values that
need heavyweight computation. Specifically, the empty rate of
font list is the highest, because our platform needs to render
many fonts to collect the complete list. Due to a similar reason,
the empty rate of canvas image is the second highest. Second,
some benign bots, such as Google and Facebook bots, may
also have empty values in JavaScript-related features.

4) Normalized Entropy: Table V also shows the normalized
entropy of adversarial and benign fingerprints broken down by
each feature. The normalized entropy of benign fingerprints
is generally larger than that of adversarial fingerprints for all
the features except for plugins. This means that fingerprints
are generally better to identify browser instances of benign
users compared with adversaries. The reason, based on our
observation, is that adversaries re-use scripts across different
campaigns, leading to duplicates of fingerprints. By contrast,
if a fingerprint is unique for a given benign user, it will be less
likely shared by other benign users.

5) Unique Rate: The last column of Table V shows the
unique rate of each fingerprint feature and the combined value.
The unique rates of benign fingerprint features are all very
high: This indicates that adversaries probably did not obtain
a large database with benign feature values. By contrast, the
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Fig. 8. Evolution of Median and Median Absolute Deviation (MAD) Value
of Normalized Entropy and #FP per Account over Six months Period.

unique rates of only three features (i.e., font list, plugins, and
canvas image) are high for adversarial fingerprints. The reason
is that the space of these three features is large and therefore
an adversary can easily mutate the feature and generate many
random, unique values. Interestingly, the unique rate of the
combined fingerprint drops after adding IP and ASN. The
reason is that the number of non-unique fingerprint increases,
but the number of unique fingerprint stays mostly the same.
That means adversaries are changing IPs when re-using such
non-unique fingerprints, while unique fingerprints are truly
abandoned after one-time use.

6) Evolution: We use two metrics, i.e., number of finger-
prints per account and normalized entropy, to measure the
evolution of fingerprints and compare adversarial and benign
fingerprints as shown in Figure 8. First, let us describe the
median value of number of fingerprints per account, which
increases constantly from close to one to larger than 1.5 over
time. The reasons are twofold: (i) the browser fingerprint
evolves, and (ii) users log in from multiple browser instances.
By contrast, the number stays mostly the same at close to
one for adversarial fingerprint. The reasons are also twofold:
(i) adversaries often abandon fake accounts after one-time use,
leading to only one fingerprint per account, and (ii) adversaries
often bind fingerprints with compromised accounts, which also
result in one fingerprint per account.

We also present the Median Absolute Deviation (MAD)
value of adversarial and benign fingerprints in Figure 8. MAD
values of benign fingerprints are much larger than those of
adversarial and they keep increasing over time. This indicates
the diversity of adversarial fingerprint evolution: Some benign
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TABLE VI. BENIGN VS. ADVERSARIAL BOTS

Bot Name Type #FPs %Requests Descriptions

Facebook

Benign 3 93.5% Official bot on PC, Android and iOS.

Adversarial 4 <0.1% Different fingerprints from benign ones

3 6.5% The same fingerprints as benign one

Google

Benign 8 20.5% Official bot with different user-agents

Adversarial 16 5.9% Different fingerprints from benign ones

6 73.5% The same fingerprints as benign one

AppleMail Benign 5 59.2% AppleMail bot with different user-agents

Adversarial 3 40.8% The same fingerprints as benign one

Amazon Silk Benign 2 97.6% Amazon Silk bot on Android and PC

Adversarial 2 2.4% The same fingerprints as benign one

Outlook Adversarial 3 100% Adversarial Window 10 Outlook bot

users log into multiple browsers and their fingerprints change a
lot over time. By contrast, adversarial fingerprints are relatively
consistent as shown in their small MAD values.

Second, we compare the median normalized entropy be-
tween adversarial and benign fingerprints over time. The
entropy of benign fingerprints is relatively stable. That is, the
fingerprintability of benign users stays mostly the same over
time. By contrast, the entropy of benign fingerprints increases
over time from around two to over five. The reason is that
more adversaries participate in attacks over time and therefore
the fingerprintability also increases over time. Another thing
worth noting is that the benign fingerprint’s entropy is also
higher than that of adversarial, indicating that users are more
fingerpintable than adversaries.

7) Case Study: Adversarial vs. Benign Bots: We give a
case study on comparing adversarial and benign fingerprints
from different bots. Table VI shows the bot names, whether
they are adversarial, the number of unique fingerprints, and
the percentage of requests in their own bot category. There
are two things worth noting. First, although most adversaries
mimick the fingerprints of benign bots correctly, there are still
a small number that is different from the benign bots, making
them easy to be differentiated. Second, the number of unique
fingerprints mimicked by adversaries is smaller than the one
used by a benign bot. On one hand, it means that certain
fingerprints will indicate benign requests. On the other hand,
it means adversaries still have rooms to improve their ability
in mimicking benign fingerprints.

B. Observation-2: Adversarial Generative Strategies

Our second observation is that adversaries adopts various
existing tools with different strategies to generate a large
number of adversarial fingerprints with different properties.

Takeaway [Adversarial Generative Strategies]:
• Scripting tools are the most popular in practice due

to its high performance.
• “Randomize” and “Block” are the most popular

strategies for emulated browser tools.
• “Mimic” is less popular probably because adver-

saries need to obtain a large database of benign
browser fingerprints.

TABLE VII. ADVERSARIAL GENERATIVE STRATEGY DISTRIBUTION
BASED ON ADVERSARIAL TOOLS AND THEIR STATISTICS

Tools Adversarial Strategy %Request %FP #Req per FP

Scripting

Keeping tools’ fingerprints 3.1% <0.1% 155,522.6

Mimicking benign fingerprints 77.6% 7.2% 657.5Disabling JavaScript

Browsers

Mimic 1.0% 9.0% 7.1
Mimic+Block 0.8% 3.5% 14.9
Mimic+Block+Randomize 0.1% 0.2% 31.5
Mimic+Randomize 0.2% 1.2% 8.0
Keep 2.4% 0.4% 348.6
Block 3.9% <0.1% 5,151.5
Block+Randomize 9.0% 60.3% 9.2
Randomize 0.2% 0.1% 105.3
Gray 1.2% 7.2% 10.3

VMs

Mimic 0.08% 3.18% 1.9
Mimic+Block 0.02% 1.55% 1.0
Mimic+Block+Randomize 0.07% 3.34% 1.35
Mimic+Randomize 0.03% 1.23% 1.57
Keep 0.03% 0.06% 32.2
Block+Randomize 0.03% <0.01% 18,112.0
Gray 0.05% 1.33% 2.4

1) Breakdown by Adversarial Tools and Strategies: Ta-
ble VII breaks down fingerprints and requests by adversarial
tools and their corresponding adversarial strategies.

Percentage of Requests. Let us start from the observation on
the percentage of requests. Scripting tools are the most popular,
taking up over 80% of all the traffic and most adversaries try
to mimic benign requests with a benign browser fingerprint
(or specifically a benign user agent). The reasons are two-
fold. First, script tools are performance efficient in generating
a large amount of requests (i.e., 30–133 requests per min for
scripting vs. 14–75 per min for emulated browsers). Second,
adversaries want their request to look like benign and therefore
tend to mimick benign browsers (or bots).

Percentage of Total Fingerprints. We describe the percentage
of total unique fingerprints for different adversarial tools and
strategies. “Block+Randomize” from emulated browsers is
the most popular because feature randomization can quickly
generate many different unique fingerprints. By contrast, the
percentage of fingerprints for “Keep” in the scripting tools and
“Block” in the emulated browsers is small (< 1%) because
the number of scripting tools is small and so is the number
of possible fingerprints when features are blocked. Note that
there are different variations of the “Mimick” strategy. Ideally,
the pure “Mimick” is the most effective way because the
generated fingerprint is exactly the same as a benign one
without inconsistencies. This is also reflected in the % of
FP, which is the largest compared with other “Mimick”. At
the same time, adversaries also combine other strategies with
“Mimick” when they run out of benign feature values.

Number of Requests per Fingerprint. The number of re-
quests per fingerprint is very large for the “Keep” strategy in
scripting tools and also emulated browsers because adversaries
are crafting many requests from unchanged adversarial tools.
The number is also large for the “Block” strategy because
the number of possible fingerprints is relatively small. Inter-
estingly, the number is also large for the “Randomization”,
indicating that adversaries are reusing fingerprints when they
generate a new, random one.

There are two things worth noting here. First, the order of
the number of requests per fingerprints is the opposite of the
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percentage of fingerprints. For example, the “Block” strategy
in emulated browsers has the largest number of requests per
fingerprint, but the percentage of fingerprint is the smallest.
The reason is that the percentage of request is similar, but the
number of fingerprints is much smaller. Therefore, the number
of requests per fingerprint is large. Second, the number of
requests per fingerprint for “Block+Randomize” is large for
VMs but small for emulated browsers. We investigate this
and find that a specific attacker using VMs randomizes the
canvas value only once but then use the randomized value
with blocked feature values to send many adversarial requests.
This leads to a very large number of request per fingerprint
for VMs. We believe that this is an exception.

Emulated Browsers vs. VMs. We compare the adversarial
strategies used in emulated browsers and VMs. The list and
percentage of both tools are very similar. It is probably because
the attack capabilities are also similar based on our analysis.
The adversary using VMs can change any feature values
just like those who use emulated browsers. Based on our
speculation and manual traffic analysis, the reason that an
adversary adopts VMs is that they use cloud services with
VMs instead of their own machines. It is worth noting that the
percentage of request with VMs is much smaller than that with
emulated browsers, because clould IPs have a higher chance
to be blocked or detected by a defense system. At the same
time, the attack speed of VMs is very small (i.e., 2–15 per
minuite).

2) Adversarial Strategy Breakdown by Fingerprint Fea-
tures: We break down adversarial generative strategies used
in emulated browsers and virtual machines by fingerprint
features. (Note that scripting tools mostly just manipulate user-
agents, i.e., their generative strategies are simple.) Specifically,
we separately analyze each fingerprint feature and break down
the percentage of requests and the number of values by the
corresponding strategies. Note that “Gray” means that either
it is challenging for us to decide the specific strategy or the
adversary adopts a combination of several strategies together
(e.g., part of user agent is blocked and other parts are kept).

Table VIII shows the results of the breakdown. First, the
“Block” strategy is the most popular for all the features except
for “User-Agent”. The reason is that “Block” is easy to adopt
as the adversary does not need to have a database of benign
fingerprints or randomize features of existing fingerprints. At
the same time, “Block” is effective because benign fingerprints
may also have empty values especially when the collection
(e.g., for font list and canvas image) takes time. More impor-
tantly, some benign clients may also intentionally block certain
features such as screen resolution for the privacy purpose. Note
that adversaries rarely blocks user agents, because the empty
rate of user agents (as shown in Table V) is almost zero
for benign users and therefore many websites simply reject
requests without a user agent value.

Second, “Randomize” is more popular on three features,
namely “Font list”, “Canvas image”, and “Plugin”, than others.
The reason is that the feature space for these three is large
and can be easily mutated. For example, an adversary can add
random noise to existing canvas images to generate a new
image; similarly, an adversary can append values to plugin
list to randomize its value. As a comparison, “Mimick” is
more popular than “Randomize” on features with guessable or

known values, such as “User Agent” and “Timestamp”. The
reason is that adversary can easily come up with a benign
feature value for them and mimick users’ behavior. As a
comparison, adversaries need to collect user fingerprint values
for some features like canvas image and font list.

Lastly, “Keep” as the default strategy still takes up a con-
siderable amount of traffic. On one hand, even if adversaries
do not change fingerprints, they can still collect information
in content scraping attack just with limited rate. On the other
hand, adversaries may combine “Keep” with other strategies
such as “Randomize” and “Block” for generation.

3) A Case Study on Credential Stuffing Attack: In this
section, we use credential stuffing as a case study to explain
adversarial strategies for a specific attack. Generally speaking,
there are two alternate moves for a credential stuffing attack: (i)
probe and (ii) takeover attempt. The first move is to probe and
determine the threshold for the number of requests associated
with a browser instance with a certain fingerprint. Specifically,
an adversary launches the probe from fake accounts with a
fixed fingerprint. Then, she keeps trying to log into the account
with wrong passwords until the browser instance with the
fingerprint is blocked (i.e., one cannot even log into an account
with the correct password). By doing so, she can obtain the
request limit enforced by the website. Note that the adversary
has to use a fake account for probing because a user without
the real password cannot tell whether the browser instance is
blocked or the password is wrong.

The second move is to attempt to take over real-world
accounts with credential stuffing. The adversary starts from
setuping target accounts and fingerprints. There are generally
two strategies: binding and non-binding. On one hand, the
most popular strategy is to generate a fingerprint and then
bind the fingerprint with the target account in the follow-up
attacks. Based on our observation, 98.6% of requests adopt
such a binding strategy. On the other hand, some adversaries
also do not bind fingerprints with accounts, which takes up
the rest 1.4% of requests. After setup, an adversary sends
requests to the target website with many account and username
combinations with or without the fingerprint-account binding
until the guessed limit from the first probing move.

Table IX shows the breakdown of probe and takeover
attempts of all the credential stuffing attacks of our dataset.
If we cannot decide whether some requests are probes or
takeover attempts, we mark them as gray. Probes and takeover
attempts are different from each other. First, the number of
requests of probe account is much larger than that of victim
account. The reason is that adversaries need to repeatedly
probe the target website with the probe account and decide
the limit. By contrast, adversaries usually do not waste time
on one account if the takeover fails. Second, a similar argument
applies to the number of requests per fingerprint. The number
of requests per fingerprint of takeover attempts is also very
close to one because of the account-fingerprint binding. By
contrast, because an adversary tries many probes on the
probe account with a fixed fingerprint, the number is high
for probe attack. Lastly, we also compare the percentage of
requests, accounts and fingerprints. Takeover attempts target
more accounts with more fingerprints compared with probes
because probes usually adopt a fixed number of accounts and
fingerprints and reuse them over time to decide the limits.
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TABLE VIII. ADVERSARIAL STRATEGY DISTRIBUTION OF EMULATED BROWSERS AND VIRTUAL MACHINES ON DIFFERENT FINGERPRINT FEATURES
(%Reqadv. : PERCENTAGE OF ADVERSARIAL REQUESTS; %FINGERPRINT PERCENTAGE OF FINGERPRINT: PERCENTAGE OF UNIQUE FINGERPRINT VALUES)

Feature Keep Block Mimick Randomize Gray

%Requestadv. %Fingerprint %Requestadv. %Fingerprint %Requestadv. %Fingerprint %Requestadv. %Fingerprint %Requestadv. %Fingerprint

User-Agent 81.1% 1.9% <0.1% <0.1% 6.6% 16.9% 7.4% 76.5% 5.5% 4.7%
Timestamp 25.0% 2.1% 46.4% <0.1% 0.6% 26.9% 27.8% 70.0% <0.1% <0.1%
Plugin 39.2% 40.0% 60.4% <0.1% <0.1% 0.1% 0.3% 58.9% <0.1% <0.1%
Font list 18.7% 0.3% 68.4% <0.1% 6.0% 13.4% 6.8% 86.3% <0.1% <0.1%
Canvas image 28.9% 10.1% 53.6% <0.1% 0.1% 9.4% 17.3% 80.5% <0.1% <0.1%
Vendor + renderer 40.6% 32.2% 54.4% <0.1% 0.8% 27.3% 4.1% 40.4% <0.1% <0.1%
Screen resolution 26.1% 0.9% 41.3% <0.1% 6.4% 26.9% 19.9% 67.8% 6.1% 5.3%
devicePixelRatio 20.1% 6.1% 70.9% <0.1% 2.3% 25.5% 2.8% 63.1% 3.7% 6.3%

TABLE IX. CREDENTIAL STUFFING BREAKDOWN

%Request %Account %FP #Requests
per account

#Requests
per FP

Probe 2.0% >0.1% 1.1% 112.8 46.1
Takeover Attempt 92.9% 99.8% 98.4% 1.3 1.0
Gray 5.0% 0.2% 0.5% 32.9 2.3
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Fig. 9. Daily use pattern of fingerprints (top, marked as blue) and the
percentage of new fingerprints (bottom) during a month period for a specific
fraud adversary.

Takeaway [Credential Stuffing Case Study]: Our
case study shows that credential stuffing adversaries al-
ternate between probes and account takeover attempts.
• A small number of probes with fixed fingerprints

are used to determine server-side defense threshold.
• Adversaries usually bind fingerprints with accounts

and attack accounts.

4) A Case Study on Fraud Transactions: We present a case
study of a specific fraud adversary and their used fingerprints
over a month period (when the adversary is active). Figure 9
shows the use pattern of distinct fingerprints on each day
(marked as blue, top) and the percentage of new fingerprints
(bottom). We observe that the adversary generates about 50%
of new fingerprints each day but also reuses another 50%
of the old fingerprints over time. The adversary also reuses
different old fingerprints over time so that they do not have
a big overlaps with the previous day. We believe that such a
strategy helps the adversary maximize generated fingerprints
and avoid being blocked.

Takeaway [Fraud Transaction Case Study]: A fraud
adversary both creates new fingerprints and reuses old
ones to maximize the utilization of fingerprints.

TABLE X. BREAKDOWN OF ADVERSARIAL FINGERPRINTS AND
STATISTICS BY ATTACK TYPE

Attack Type Attack tools percentage D(Adv.‖Benign) Entropy Unique
Scripting Browsers VM rate

Account takeover 84.2% 15.5% 0.3% 2.3±2.3 7.8±2.7 82.7%
Fake account 49.2% 50.6% 0.1% 1.8±1.6 6.5±1.4 61.9%
Fraud 30.0% 69.6% 0.4% 2.2±2.1 7.1±0.9 98.8%
Scraping 93.4% 6.6% <0.1% 4.1±4.6 7.0±1.4 49.3%
Giftcard Cracking 97.5% 2.2% 0.3% 0.03±0.1 5.8±1.3 96.3%

C. Observation-3: Adversarial Fingerprints over Attack and
Account Types

Our third observation is on breaking down adversarial
fingerprints by attack and account types.

1) Breakdown by Attack Type: We break down adversarial
fingerprints based on the attack types defined in Section IV-A
and show the statistics. Specifically, we include four metrics:
the K-L divergence between adversarial and benign finger-
prints D(Adv.‖Benign), the normalized entropy, the unique
rate (i.e., the percentage of fingerprints that are either benign
or adversarial), and the breakdown of attack tool percentage
(scripting, emulated browser and virtual machine). Table X
shows the numbers and we have four observations.

First, emulated browsers are used more often for fake
account signups and fraud transactions than other attacks (e.g.,
giftcard cracking and content scraping). The reason is as
follows. Fraud transaction and fake account signups focus on
the attack accuracy rather than the total number of requests. For
example, a successful fraud transaction is more valuable than
many failed ones. Therefore, the adversary wants to mimic a
real user to the best that they can and an emulated browser is
a better tool compared with scripting tools (which has limited
capabilities). As a comparison, some attacks focus more on the
performance, e.g., content scraping on the amount of scraped
contents. Scripting tools are more suitable for such attacks to
obtain a large amount of time-sensitive contents.

Second, the K-L divergence between adversarial and be-
nign fingerprints of content scraping is much larger than
that of other attacks. The reason is that adversaries mostly
adopt feature randomization to scrape contents, which leads
to a big gap between adversarial and benign fingerprints. By
contrast, other attacks, such as fraud transactions, rely more
on mimicking user browsers, which lead to a relatively small
gap. Giftcard cracking is an extreme case, where the K-L
divergence score is only 0.03. That is, the adversarial and
benign fingerprints of giftcard cracking are very similar.
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TABLE XI. BREAKDOWN OF # OF ACCOUNTS AND # OF FINGERPRINT
PER ACCOUNT BY ACCOUNT TYPES

Website

User
Account

Adversarial Account

Bot/Fake Compromised

#Account #Fingerprint
per account #Account #Fingerprint

per account #Account #Fingerprint
per account

Rest. A 13,455,375 1.3 265,496 1.0 79,301 3.8
Bank A - - - - - -
Bank B 21,059,672 1.3 32,184,479 1.0 43,257,818 7.2
Bank C 20,557,044 2.2 472,179 1.2 1,464,737 6.6
Finance A 350,378 2.2 3,140 1.1 13,224 6.9
Finance B 1,195,366 1.8 25,128 1.0 10,954 5.6
Finance C 11,474,213 2.6 2,287,748 1.0 787,930 14.9
Shop A 3,023,655 1.7 8,746 1.0 47,720 5.7
Shop B 4,574,309 1.4 26,221 3.3 70,175 3.8
Airline A 17,774,715 1.7 114,986 1.0 279,489 6.4
Airline B 4,385,500 1.7 38,293,398 1.0 756,532 2.3
ISP A 12,550 1.0 17 1.0 46 2.1
ISP B 45,540,156 2.2 152,378 1.1 322,925 6.5
ISP C - - - - - -

Third, we look at the normalized entropy, which is rela-
tively large for account takeover attempts, fraud, and content
scraping. The reason might be that adversaries bind fingerprints
to browser instances without changing them when launching
these attacks multiple times, e.g., multiple attempts to take
over accounts and sign up fake accounts.

Lastly, we describe the unique rate, which means the per-
centage of fingerprints that are only adversarial. Interestingly,
the unique rate of gift cracking attack is also very high,
meaning that adversaries generate many random fingerprints.
Since the K-L divergence score is very low, it means that such
random, unique fingerprints only take up a small amount of
adversarial requests. In other words, the majority of requests
from gift card cracking contain fingerprints that are mimicked
from benign users.

Takeaway [Attack Type]:
• Fake account signups and fraud transactions tend to

use emulated browsers more often than other attacks
like account takeover attempts and giftcard cracking.
• The fingerprints used by content scraping are more

different from benign ones compared with other
attacks due to the reliance on scripting tools.

2) Breakdown by Account Type: We break down finger-
prints and accounts based on account types and show the
statistics in Table XI. Note that we do not have account data
for Bank A and ISP C and that is why all the numbers are
empty for these two websites. There are three things worth
noting here. First, the number of fingerprints per user account
is generally larger than that per bot or fake account. The reason
is that it is usually very cheap or easy for adversaries to create
new bot or fake accounts. Therefore, they tend to create a
new fake account for attacks rather than reusing existing fake
accounts, which risks being blocked or detected. The only
exception is Shop B and we checked the data manually. One
specific adversary targeting Shop B does reuse fake accounts
extensively, which leads to a large number of fingerprints per
fake account.

Second, the number of fingerprints per compromised ac-
count is much larger than that per user or bot/fake account.

It is probably because compromised accounts—originally be-
longing to a real user—are valuable asset to adversaries. On
one hand, such accounts may contain values (like positive
balance in a bank’s account), which can be obtained by an
adversary. On the other hand, these accounts will be less
probably blocked by a website, because they originally belong
to a user. That is, an adversary may log into a compromised
account multiple times with potentially different fingerprints.
Note that this is different from previously-mentioned credential
stuffing where most accounts have not been compromised and
adversaries bind accounts with fingerprints for attacks. Here,
the accounts are compromised and adversaries are launching
fraud transactions. Moreover, we also observe that compro-
mised accounts are being logged in by different adversaries,
which may indicate some underground transactions among
adversaries. These different adversaries also have different
browser fingerprints, which further increase the number of
fingerprints per compromised account.

Lastly, we observe that sometimes adversaries can create
many bot/fake accounts for content scraping. Take Airline B
for example. The number of bot/fake account is almost ten
times lager than that of user account. This brings challenges
to websites in maintaining accounts (because the majority
accounts are in fact bots).

Takeaway [Account Type]:
• # of fingerprints per user account is generally

larger than that per fake account, because adversaries
abandon fake account after one-time use.
• # of fingerprints per compromised account is sig-

nificantly larger than that per user or fake account
due to fake account reuse and selling. for profits.

VI. DISCUSSION

Ethics. Our data collection is performed at F5, Inc., which
has contracts with our target top-ranked commercial websites.
We would like to point out that it is always a trade-off between
security and privacy during such a massive data collection
effort. On one hand, such data collection is useful to defend
against bot and fraud using the company’s security product. On
the other hand, the collected data inevitable contains potential
private information. We did our best to maintain the security
product’s performance while minimizing the privacy risks.

Specifically, the company has a legal and ethics review
department to ensure that all personal data is securely pro-
cessed and stored, which obeys privacy laws such as General
Data Protection Regulation (GDPR) and California Consumer
Privacy Act (CCPA). The department also discusses and ne-
gotiates with the company’s customers (i.e., the 14 websites)
to ensure their private data is securely maintained. During
data collection, all personal information—such as user name,
canvas rendering and even the list of fonts and plugins—is
processed via secure one-way hashing. The paper in its current
shape has also gone through several rounds of legal and ethics
review to ensure that no personal data is involved before being
peer reviewed or made public. In addition, all website names
are anonymized as part of the agreement of the measurement
study to avoid potential leaks of defense strategy used at the
server-side.
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Attacks other than bot and fraud. Our measurement is to
study attacks relying on adversarial fingerprints. Many tradi-
tional attacks, such as SQL injection and cross-site scripting,
are not relying on adversarial fingerprints. That is, adversaries
log into their own account with a benign fingerprint and send
a request with malicious payload. Such traffic is categorized
as with a benign fingerprint (although the traffic is malicious).

Benign fingerprint randomization. Many browsers and ex-
tensions also fake or randomize fingerprints for the purpose
of protecting users’ privacy. Such fingerprints are categorized
as benign instead of adversarial because the traffic analysis
will consider the request as benign. Note that the percentage
of traffic from such browsers is small. For example, Brave,
a popular privacy-preserving browser that can randomize fin-
gerprints, only contributes to <0.00001% of total traffic on
these 14 websites. Therefore, they do not affect our conclusions
(e.g., Observation 1 on the difference between adversarial and
benign fingerprints).

Accuracy of Bot and Fraud Detection System. We would
like to admit that it is challenging to estimate the true accuracy
of the company’s bot and fraud detection system due to the lack
of ground truth data. While this is indeed one limitation of the
paper, this is also the best that we can perform even given state-
of-the-art approaches in bot and fraud detection. We also want
to mention that an external, independent review shows that
the detection system reduces costs caused by account takeover
attacks by 96% and the total number of fake accounts by 92%.

VII. RELATED WORK

Our work is broadly related to Web Security [12], [22]–
[27], [41], [51], [52], [63], or particularly browser finger-
prints [46]. We discuss related work below.

Browser Fingerprint Features. Over the past ten years, prior
works have proposed ways to improve browser fingerprinting
with different features when being used for Web tracking [46],
[49]. Eckersley [30] is probably the first to propose and
design browser fingerprinting with initial features such as fonts
obtained via Flash and user-agent. After Eckersley, people have
proposed many methods [3], [4], [6], [14], [18], [21], [33],
[50], [58], [59], [69]–[71], [80] to improve browser fingerprint.
At the same time, Our study’s contribution is to study how
attackers utilize features proposed by prior works to generate
adversarial fingerprints.

Browser Fingerprint Application. Browser fingerprints can
be used for different purposes. First, we describe multi-factor
authentication. Spooren et al. [72] show the variability and
the predictability of the use of device fingerprinting for risk-
based authentication because mobile devices the fingerprints
carry a lot of similarity. Laperdrix et al. [44] present the first
fingerprinting-based focusing on the canvas-based authentica-
tion scheme to replay attacks. Andriamilanto et al [8] collect
browser fingerprints throughout 6 months from a population
of general browsers as an authentication factor. FPSelect [9]
and BrFAST [7] are follow-ups on web authentication. Second,
We describe bot and fraud detection. Many prior works [10],
[17], [39], [60], [65], [81] analyze bot or fraud traffic using
measurement study and their defenses. In particular, Li et
al. [53] build so-called “honey sites” to attract bot traffic
and analyze browser fingerprints and network behaviors. As

a comparison, our measurement study is the first to analyze
the difference between adversarial and benign fingerprints.

Browser Fingerprint Detection and Measurement. Prior
works have proposed to detect and measure browser finger-
prints in the wild. Many prior works [5], [19], [31], [43],
[57], [62], [75] conducted real-world measurement study on
browser fingerprints using either desktop or mobile traffic.
Jueckstock and Kapravelos [40] design VisibleV8, a dynamic
analysis framework, to support web security and privacy re-
search. Iqbal et al. [38] present FP-Inspector, a learning based
approach to accurately detect browser fingerprinting. Vastel et
al. [79] detects browser fingerprint inconsistencies in a small
manually-curated dataset. Datta et al. [29] and Merzdovnik et
al. [56] evaluate and measure anti-fingerprint techniques. As a
comparison, our measurement is the first to perform a billion-
scale study on adversarial browser fingerprints.

Extension Fingerprinting. Extension fingerprinting is a tech-
nique (different from browser fingerprinting) to detect the ex-
istence of certain browser extensions. For example, Starov and
Nikiforakis [74] shows the fingerprintability of browser exten-
sions. Trickel et al. [78] present a client-side anti-fingerprinting
countermeasure, called CloakX, using client-side diversifica-
tion to defend against extension detection. Starov et al. [73]
design an in-browser mechanism to protect users against ex-
tension fingerprinting. Karami et al. [42] present the automated
creation and detection of behavior-based extension fingerprints
and introduce two novel fingerprinting techniques that monitor
extensions’ communication patterns. Our measurement work
focus on browser but not extension fingerprinting.

Fingerprint Manipulation Tools. Prior works have designed
many tools to change browser fingerprints, which can be used
to, for example, protect user privacy. For example, Fp-block
[77], Fp-Guard [83], Blink [47], Fprandom [45], Deterministic
Browser [20], and UniGL [84] propose different ways to mod-
ify browser fingerprints and protect user’s privacy. Nikiforakis
et al. [61] randomly change part of browser fingerprints for
enhanced privacy. Baumann et al. [13] add noise to browser
canvas rendering and disguise browsers. Fiore et al. [34]
provide a coherent design to mimic browser fingerprint and
intermingle fingerprints within others. Liu et al. [54] present
Gummy Browsers that collect and spoof the browser finger-
printing information without the victim’s awareness.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we perform the first billion-scale study of
adversarial and benign browser fingerprints on 14 top-ranked
commercial websites. The study and measurement data spans
over half a year from January 2021 to June 2021 and contains
over 36 billion HTTP(s) requests and more than one billion
unique fingerprints. We classify requests into benign and five
different attacks (account takeover attempt, fraud transactions,
automated fake account signup, aggressive content scraping,
and giftcard cracking) based on a major security product from
F5, Inc.

Our key takeaway of the measurement study is that ad-
versarial fingerprints are significantly different from benign
ones in terms of metrics like entropy and unique rate. This
observation will have a great impact on existing study on
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browser fingerprints because many of them do not differen-
tiate adversarial fingerprints from benign. Take personalized
advertisement as an example, which only need to consider
benign fingerprints but not adversarial. Fingerprint entropy will
change if adversarial ones are removed from existing studies,
which affects personalization accuracy. Similar arguments can
be applied to fingerprints as part of authentication. Therefore,
we suggest that future researches on browser fingerprint should
clearly differentiate adversarial and benign fingerprints when
studying fingerprint properties especially when the use cases
are related to benign users.

In the future, we envision that our measurement study can
be used for the following possible directions. First, our study
may shed light on bot and fraud detection using adversarial
fingerprints. Such a system may adopt many features studied
in the paper such as fingerprint inconsistencies and evolution.
Second, our study especially the understanding of adversarial
fingerprints may help existing privacy-preserving browser to
better design fingerprints to bypass web tracking. Third, our
study may lead to further studies on existing fingerprint
application scenarios such as two-factor authentication and ads
personalization.
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