
Who Touched My Browser Fingerprint?
A Large-scale Measurement Study and Classification of

Fingerprint Dynamics

Song Li
Johns Hopkins University

lsong18@jhu.edu

Yinzhi Cao
Johns Hopkins University

yinzhi.cao@jhu.edu

ABSTRACT

Browser !ngerprints are dynamic, evolving with feature values

changed over time. Previous !ngerprinting datasets are either small-

scale with only thousands of browser instances or without con-

sidering !ngerprint dynamics. Thus, it remains unclear how an

evolution-aware !ngerprinting tool behaves in a real-world setting,

e.g., on a website with millions of browser instances, let alone how

!ngerprint dynamics implicate privacy and security.

In this paper, we perform the !rst, large-scale study of millions of

!ngerprints to analyze !ngerprint dynamics in a real-world website.

Our measurement study answers the question of how and why

!ngerprints change over time by classifying !ngerprint dynamics

into three categories based on their causes.We also observed several

insights from our measurement, e.g., we show that state-of-the-

art !ngerprinting tool performs poorly in terms of F1-Score and

matching speed in this real-world setting.

ACM Reference Format:

Song Li and Yinzhi Cao. 2020. Who Touched My Browser Fingerprint? A

Large-scale Measurement Study and Classi!cation of Fingerprint Dynamics.

In ACM Internet Measurement Conference (IMC ’20), October 27–November

29, 2020, Virtual Event, USA. ACM, New York, NY, USA, 16 pages. https:

//doi.org/10.1145/3419394.3423614

1 INTRODUCTION

Browser !ngerprinting, an alternative to browser cookies when

being disabled or cleared, is that a website extracts a list of browser

features at the client side and then constructs an identi!er, called

a !ngerprint, based on these extracted features to identify or au-

thenticate the browser. Browser !ngerprinting is !rst studied by

Eckerlsey [17] via his famous Panopticlick website [10] and now

widely adopted by many tracking companies and real-world Alexa

websites according to a recent study [18].

Prior works have measured browser !ngerprints in the wild. On

one hand, large-scale studies, such as Gómez-Boix et al. [20], have

analyzed millions of browser !ngerprints in the wild via collecting

!ngerprints on a real-world website. However, there are two major

drawbacks. First, they only studied the e"ectiveness of !ngerprints

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro!t or commercial advantage and that copies bear this notice and the full citation
on the !rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci!c permission
and/or a fee. Request permissions from permissions@acm.org.

IMC ’20, October 27–November 29, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8138-3/20/10. . . $15.00
https://doi.org/10.1145/3419394.3423614

in di"erentiating and identifying browser instances but not how !n-

gerprints evolve over time—which are called !ngerprint dynamics

in the paper. Second, prior works [20] adopt cookies as the ground

truth—which rely on an assumption that people clear cookies but

in a rare manner. This assumption is untrue as demonstrated in

our study: 32% of browser instances clear cookies—one major cause

is intelligent tracking prevention [6], which automatically deletes

tracking cookies after a certain period.

On the other hand, there exists small-scale datasets with only

thousands of !ngerprints, such as Pugliese et al. [37] and the one

used in FP-Stalker [40], an evolution-aware !ngerprinting tool that

links evolved !ngerprints together. Those work usually adopt out-

of-band identi!ers, e.g., one provided via a browser extension, to

recognize users. However, the requirement of out-of-band identi-

!ers restrict the study scale: It is di#culty to let millions of users

to install extensions for a measurement purpose.

In this paper, we perform the !rst large-scale measurement study

of millions of !ngerprints on a real-world website to analyze !nger-

print dynamics, i.e., how browser !ngerprints change over time and

why they do so. Speci!cally, we implemented our version of !nger-

printing tool and deployed it at a real-world European website vis-

ited regularly by its users, which collected a dataset with 7,246,618

!ngerprints from 1,329,927 browser instances and 1,148,864 users.

Our representation of browser instance is via a new type of identi-

!er, called Browser ID, a combination of an anonymized username

using hash values and some stable browser features. On one hand,

Browser ID is much more stable as compared with cookies: The

false positive of Browser ID of representing browser instances is

estimated as 0.1% and the false negative rate as 0.3%; on the other

hand, Browser ID can di"erentiate multiple devices of the same

user: In our study, 14% users visit the deployment website using

more than one device.

Next, we measure !ngerprint dynamics by calculating the dif-

ference between two consecutive !ngerprints of the same browser

instance. The advantage of such di" operation over a simple !n-

gerprint pair representation is that if two browser instances with

di"erent !ngerprints (e.g., one instance with an additional font)

get the same update (e.g., from Chrome 56 to 57), the delta in-

formation will also be the same. We produce a dataset of 960,853

dynamics—Our analysis of the dataset shows that all the dynamics

can be classi!ed into three major categories based on their causes:

(i) browser or OS updates, (ii) user actions and (iii) system envi-

ronment updates. Our further study of the dynamics dataset yields

four insights:

• Insight 1: Browser !ngerprints, particularly the dynamics, reveal

privacy- or security-related information. The reason is that the

IMC ’20, October 27–November 29, 2020, Virtual Event, USA Song Li and Yinzhi Cao

cause of a piece of dynamics could contain privacy- or security-

related information. For example, we !nd that a certain emoji

update at a mobile Chrome browser can reveal the fact that

a Samsung browser is co-installed with the Chrome browser

because the Samsung update introduces a new emoji. Similarly,

for another example, the font list and the changes of fonts in

!ngerprint dynamics can be used to infer whether Microsoft

O"ce is installed or even updated.

• Insight 2: The F1-score and matching speed of prior evolution-aware

!ngerprint work degrade signi!cantly in a large-scale setting. As

stated, prior work, particularly FP-Stalker [40], is evaluated us-

ing a relatively small dataset with thousands of users and !n-

gerprints to link evolved !ngerprints. We !nd that the F1-score

of rule-based FP-Stalker degrades from 86.1% to 75.9% for top

ten candidates and the matching speed from around 100 ms

to 1 second if the number of !ngerprints increases from 100K

to one million; the learning-based FP-Stalker cannot scale to a

large-scale dataset with more than 300K !ngerprints (the scala-

bility issue of learning-based FP-Stalker is acknowledged in the

original paper).

• Insight 3: The dynamics of some browser features are correlated

although the features themselves are not. For example, we have

observed that the sample rate of audio card in Chrome may

change together with the GPU renderer. The reason is that al-

though some features are not directly related, the causes behind

the changes may be. Speci!cally, in the aforementioned example,

Chrome adopts DirectX to manage audio card on certain Win-

dows machines: An update of DirectX will in#uence both the

GPU renderer and the audio sample rate.

• Insight 4: The timing of some !ngerprint dynamics are correlated

with real-world events, such as the release of browser or OS updates.

We believe that such an insight might be used to improve the

performance of existing works in linking !ngerprints. For exam-

ple, if Firefox updates to a new version with an added web font, a

!ngerprinting website can predict that all the !ngerprints in the

database with the old Firefox version may change to the version,

i.e., with a updated user agent string and the newly-added web

font.

2 MEASUREMENT PLATFORM

In this section, we introduce our measurement platform used to

collect and generate two types of dataset: raw and dynamics. The

raw dataset contains all the !ngerprints including anonymized

usernames, cookies, and IP addresses from the deployment websites;

the dynamics dataset is processed by grouping !ngerprints into

browser instances and calculating the deltas.

2.1 Terminology De!nition

In this part, we describe several terminologies that are used through-

out the paper for those readers who are unfamiliar with them.

• Browser Instance and Browser ID. A browser instance is a piece

of browser software installed on a certain operating system and

a hardware device. For example, a Google Chrome Browser on a

desktop is one browser instance and Microsoft Edge on the same

device is another. We assign each unique browser instance an ID

(called browser ID) and describe its makeup later in Section 2.3.1.

!"#$%&'"()*+",-",

."/#01"

-2+2)

3(-2+2/$"*

24,0'"

50+6

'0(01",

!0)0*+)%,01"*+",-",

!0)0*),0(+4",*'%78$"

9$2"()

9%%62"*

2(+)0$$0)2%(

:872%**

70)0

;<=

,"(7",2(1

>0+>"+

?0+2@*

4"0)8,"*

70)0

!0)0*@%$$"@)2%(*'%78$"

9%%62"

>0(7$",

!"#$%&

:1"()*+),2(1

<$812(+

A

90(-0+*)"+)

:872%

2(4%*

)0+6

;<=

,"(7",

)0+6

<2@)8,"*

>0(7$2(1*

'%78$"*

90(-0+*

;<=

<2@)8,"**********

70)0<2@)8,"*

+&(@>,%(2B"

Figure 1: Architecture and deployment of our tool deployed

at an European website for eight months.

• User ID. A user ID is an identi!er for distinguishing one user

from another, which is shared across di$erent devices of the

same user. In this paper, we adopt a hash value of the username

as the user ID.

• Browser Fingerprint and Anonymous Set. A browser !ngerprint

(or for short !ngerprint) is a set of features, such as user agent

and font list, from a given browser instance. An anonymous

set, a term widely used in prior works [25], is a set of browser

instances with the same !ngerprint. The smaller the anonymous

set size is, the better quality the browser !ngerprint is.

• Fingerprint Dynamics. A piece of !ngerprint dynamics repre-

sents the change of one browser instance’s !ngerprint due to

various reasons, such as browser updates and user actions.

2.2 Raw Dataset Collection

In this part, we describe our methodology in collecting a raw dataset

with browser !ngerprints, IP addresses and user IDs. We start from

describing our tool and then present the tool’s deployment.

2.2.1 Fingerprinting and Data Collection Tool. We implemented

an open-source !ngerprinting and data collection tool at a reposi-

tory [5]. Our tool, as shown in Figure 1, has two main components:

one data collection client and one data storage server. The client has

a task manager that launches di$erent tasks in parallel to collect a

variety of features as documented by di$erent prior works [8, 16, 25].

Then, the data transfer module of the client will encode the col-

lected information and send it to the data storage server. Note that

the data transfer module will check whether the information is

already in the server’s database—if yes, the module will just send a

hash value to save the transmission overhead.

There are two properties of our tool that is worth mentioning.

First, our tool is fast, which !nishes collecting all the information

within one second. Speci!cally, we divide data collection stages

into many modules and run them in parallel. Then, the data collec-

tion module compresses the information transmitted between the

client for e"ciency consideration. Second, our tool utilizes only

one third-party JavaScript library, i.e., three.js. The reason is that

the website owner, citing their company policy, speci!cally asks us

to avoid using third-party libraries, such as jQuery. Their concern

is that the inclusion of third-party JavaScript library may introduce

Who Touched My Browser Fingerprint? IMC ’20, October 27–November 29, 2020, Virtual Event, USA

unknown or under-controlled vulnerabilities. After many rounds

of discussions, we mutually agree to keep the necessary one, i.e.,

three.js.

2.2.2 Tool Deployment. We deploy our tool at an European website

from July 2017 to July 2018 to collect browser !ngerprints. Our

deployment can be divided into three stages and only the data

collected from December 2017 and July 2018 in the Deployment

Stage 3 is used in the study:

Deployment Stage 1: Deployment on Exit Webpage (two months).

In the !rst stage, we install our tool on the least important webpage

of our deployment website, i.e., the exit webpage that the user sees

after clicking the log-out button. During this stage, we encounter

and !x several bugs such as the use of old JavaScript features leading

to console errors.

Deployment Stage 2: Deployment on 30% of Webpages (two

months). In the second stage, we start to install our tool on 30%

of webpages of our deployment website, including the login page

and several other content pages. During this stage, we !nd that

our server, deployed at Amazon, cannot handle the huge amount

of tra"c introduced from our deployment website, and therefore

we have to increase both the memory and CPU capability of our

server.

Deployment Stage 3:Deployment onAllWebpages (eightmonths).

In the last stage, we deploy our tool on all the webpages of our

target website—the data collected during this stage is used in this

study. The same as previous stage, we also increase our server

capability to accommodate more tra"c. Note that due to technical

glitches, our data collection server was partially down during eight

days in the !rst month. We also make two hot patches during our

deployment: one on the 7th day to include the list of HTTP headers

and the other on the 29th day to !x an error of “Accept” header

collection in HTTP requests. That said, any !ngerprint or statistics

involving these two features only re#ect data collected after these

two days.

2.3 Dynamics Dataset Generation

In this part, we describe how to generate !ngerprint dynamics from

the raw dataset. The generation of the dynamics dataset has two

steps. First, we represent each browser instance via browser ID

and then group !ngerprints based on browser instances. Second,

we calculate the delta, using a di$ operation, between each pair

of consecutive !ngerprints of the same browser instance: Those

deltas are the dynamics dataset of our study.

2.3.1 Browser Instance Representation. We represent each browser

instance with a special identi!er, called browser ID. The generation

of browser ID has two steps: (i) initial construction and (ii) process-

ing of special cases. First, we construct an initial browser ID based

on user ID and stable browser features, e.g., hardware-related ones

including CPU class, device and OS, number of CPU cores, browser

type and GPU information. Second, we link two browser IDs to-

gether if these two browser IDs belong to some exceptional cases

observed by cookie instances. For example, if a mobile browser

opens a webpage in the desktop mode, the observed browser type

changes from mobile to desktop—this is one special case for such

linking.

There are two things worth noting here. First, we adopt browser

ID over cookies and user IDs alone due to the following reasons.

We do not use cookies because a user may clear cookies and thus

multiple cookie instances may map to one browser ID. Over 30%

of browser instances in our dataset have cleared cookies at least

once. Furthermore, we do not use user ID alone because a user

may have multiple devices or use more than one browser to visit

our deployment website. Over 15% of users in our dataset have

used more than one browser for visits. Second, there are some

software features, such as the support of localStorage and cookie,

are also stable according to the cookie metrics but excluded from

the browser ID. The reason is that the changes of these features

are controlled by the users, thus being unpredictable. Furthermore,

because we use cookies to gauge stability, the stability of such

features may be in#uenced.

2.3.2 Di! Operation. In this part, we describe our di$ operation

that calculates the delta between two !ngerprints of the same

browser instance. Depending on the feature type, e.g., string, set

and images, there are three di$erent operations.

First, we will parse a string feature into ordered sub!elds and

calculate the di$ of each !eld. For example, the user agent is broken

down into many ordered sub!elds, such as browser name, ver-

sion, subversion, backslashes, parenthesis and even whitespaces.

Note that we requires that sub!elds to be ordered because some-

times the sequence may also change, e.g., from “gzip, de#ate, br” to

“br, gzip, de#ate”. Furthermore, whitespaces may also be added or

deleted, e.g., from “gzip,de#ate” (nowhitespace inMaxthon Browser

4.9.5.1000) to “gzip, de#ate” (with whitespace in 5.1.3.2000).

Second, we represent a set feature just as a set and calculate

the di$ via two subtraction operations to obtain added and deleted

elements. For example, the font list is obtained via querying each

font and forming a set. We will calculate two subset: one for added

fonts and the other for deleted fonts.

Third, we calculate the di$ of two complex features, e.g., a canvas

image, as a pair of two hashes. Note that it is possible to compute the

pixel di$erences for such features. We did not adopt this approach

because such delta does not contain much information, i.e., the

change of the same pixel might not indicate the same update, and

the computation involves heavyweight operation, slowing down

the dataset generation.

2.3.3 False Negative and Positive Estimation. In this part of the

section, we estimate the false negative and positive rates of our

browser instance representation via browser ID. From a high level,

our estimation is based on the appearance of cookies within or

across di$erent browser instances: Two browser instances with

the same cookies are falsely separated, being a false positive; One

browser instance with interleaved cookies should be separated into

two instances, being a false negative. Then, we use the distributions

of false positives and negatives among those browser instances

that do not clear cookies to estimate those that do. Our overall

estimation is that the false negative rate is around 0.3% and the

false positive rate around 0.1%.

Now let us look at the details. First, we estimate false negative

rate, i.e., two browser IDs should be linked together but not. Our

investigation using cookies shows very few abnormal cases, i.e.,

0.5% among all the browser instances in which two browser IDs

IMC ’20, October 27–November 29, 2020, Virtual Event, USA Song Li and Yinzhi Cao

having the same cookie. Those cases, mostly due to a client provid-

ing fake user agent strings, are !xed via cookies, but there are 32%

of browser instances that clear cookies (See Section 3.2.1). There-

fore, we estimate that around 0.3% of browser instances among 32%

browser instances may also have such abnormal cookie patterns.

It is worth noting that the cookie representation may sometimes

also introduce false positives. For example, we observe that two

iPads with di"erent hardware features have the same cookie—this

only happens once in our database. After some investigation, we

believe that the user of these two iPads performs an iTunes backup

so that our cookie is automatically transferred from the old iPad

to the new one. In other words, these are indeed two browser

instances.

Second, we estimate false positive rate, i.e., two browser IDs

should be not linked together but actually are. Our methodology

is based on the assumption that if two cookies appear together

and are interleaved with each other in the time axis, this browser

ID should be broken down into two. Note that this is di"erent

from a cookie deletion case, where deleted cookies will never show

up again, or a private browsing, where one cookie persists but

cookies in private browsing behave like deleted ones. There are

0.1% of browser instances with this pattern, thus categorized as

false positives. Wemanually inspect these 0.1% of browser instances

and think that it may be because users visit our deployment website

using computers with exactly the same con!gurations, e.g., these

in a computer lab.

3 DATASETS

In this section, we introduce both the raw and dynamics datasets.

Note that per our agreement with the deployment website, we will

share our dataset if other researchers reach out to us and sign a

non-disclosure agreement (NDA), which con!rms that (i) their use

of our dataset is constrained in an academic setting, e.g., publishing

academic papers, (ii) they will not release any potential private

information contained in our dataset, and (iii) they will not give

the dataset to any third-party.

3.1 Raw Dataset

We now introduce the raw data: it contains 7,246,618 !ngerprints

with 1,586,719 distinct values from 226 countries. Figure 2 shows

the percentage of identi!able browser !ngerprint when the size of

anonymous set for each !ngerprint increases.When the anonymous

set size is 10, the identi!able browser percentage, including IP city,

region and country as features, for our raw dataset is over 90%.

Note that the identi!able browser percentage with the anonymous

set size as one is relatively low because many browser instances

visit our deployment website more than once, and we will show

detailed breakdown regarding browser instances in later sections.

We also break down the identi!able !ngerprint percentage based

on di"erent platforms and browsers in Figure 2. One interesting

!nding is that on desktop platform, Firefox is on par with other

browsers in terms of !ngerprintability, while Firefox on mobile

platform is the most !ngerprintable browser. The reason is that

many mobile users will adopt the default browser, either Safari or

Samsung Browser, in their cellphones. Therefore, the installation of

another browser like Firefox is itself a !ngerprintable feature. The

=1 2~10 10~50 >50

Overall

 0 0.2 0.4 0.6 0.8 1

Overall

Chrome

Firefox

Safari

Edge

 0 0.2 0.4 0.6 0.8 1

Desktop

(a) Desktop Browsers

Overall

Chrome
Mobile

Firefox
Mobile

Mobile
Safari

Samsung
Internet

 0 0.2 0.4 0.6 0.8 1

Mobile

(b) Mobile Browsers

Figure 2: Percentage of identi!able browser !ngerprints vs.

the size of anonymous set in our raw dataset

same also applies to Chrome Mobile, which is less !ngerprintable

than Firefox Mobile but worse than Safari and Samsung Browser.

We further break down collected raw !ngerprints by di"erent

features and show the distinct and unique values in Table 1. The

distinct number means all the possible values for that feature, and

the unique all the values that belong to only one !ngerprint. Here

is a brief description of those features below.

• HTTP Headers. HTTP headers contain many !ngerprintable

features, such as User-agent, Accept, Encoding and Language.

• Browser Features. Browser features include plugins, timezone,

and support of di"erent new browser functions, such as WebGL,

localStorage, addBehavior (an IE feature), and openDatabase (a

JavaScript-level database).

• OS Features. OS features include installed fonts like Arial, lan-

guages like Japanese and Chinese, and emojis (i.e., part of Canvas

Images in Table 1) like a smiling face. We rely on two side chan-

nels documented by prior works [3] to detect the list of fonts

and installed languages.

• Hardware Features. Hardware features include information

about GPU, audio cards, screen and CPU. Modern browsers pro-

vide some APIs to access hardware information, such as CPU

class (e.g., x86), GPU vendor (e.g., NVIDIA), and audio card in-

formation (e.g., number of channels).

• IP Features. IP addresses are not included in browser !nger-

printing because a user may move a device from places to places.

For the reason of completeness, we abstract some information

from IP addresses, such as IP city, region and country.

• Consistency Features. Consistency features [8] refer to whether

our script can obtain consistent information on a certain feature

via di"erentmethods. For example, we can obtain OS and browser

information from both user agent and JavaScript navigator, and

then check the consistency between these two.

Note that the list of fonts collected by JavaScript via a side-

channel is the most !ngerprintable among all the features in terms

of distinct and unique values. After that, both user agent and the list

of plugins, especially the latter, also contribute a lot to the overall

!ngerprint. The user agent contains many information, such as

platform and browser type, which makes itself a big !ngerprintable

vector. As for the plugin list, if a user installs a plugin, it is more

or less unique as compared to those who do not have plugins. It is

Who Touched My Browser Fingerprint? IMC ’20, October 27–November 29, 2020, Virtual Event, USA

Table 1: Statistics of di!erent features used in the dynamics

dataset (“Distinct #” the number of distinct values for "nger-

print or dynamics and “Unique #” the number of values that

only appear once. A feature with an indent means that the

feature is a subset of the top-level one.)

Feature Names
Static Values Dynamics

Distinct # Unique # Distinct # Unique #

HTTP Headers 195,845 136,256 18,180 12,725

User-agent 41,060 23,116 9,628 6,152
Browser 64 8 53 30
OS 20 3 23 5
Device 3,378 1,210 277 226

Accept 9 1 4 0
Encoding 26 3 26 8
Language 14,214 9,191 1,939 1,458
Timezone 38 0 314 112
HTTP Header List 344 126 126 66

Browser Features 17,036 14,362 1,037 795

Plugins 16,633 14,032 984 773
Cookie Support 2 0 2 0
WebGL Support 2 0 2 0
localStorage Support 2 0 2 0
addBehavior Support 1 0 0 0
openDatabase Support 1 0 0 0

OS Features 193,843 150,280 16,605 12,793

Language List 1,181 597 452 303
Font List 115,128 88,448 6,763 5,524
Canvas Images 14,006 8,654 7,989 5,524

Hardware Features 75,462 44,708 4,871 3,210

GPU Vendor 26 1 2 1
GPU Renderer 5,747 1,743 705 552
GPU type 4,943 1,436 214 130

CPU Cores 29 3 28 12
Audio Card Info 114 23 225 62
Screen Resolution 139 32 273 149
Color Depth 6 0 10 2
CPU Class 5 0 4 3
Pixel Ratio 1,930 1,207 3,030 1,936

IP Features 28,636 8,720 122,612 84,232

IP City 27,261 8,112 121,565 83,445
IP Region 2,446 239 16,376 9,947
IP Country 226 9 1,627 779

Consistency Features 13 1 19 4

Language 2 0 2 0
Resolution 2 0 2 0
OS 2 0 2 0
Browser 2 0 2 0

GPU Images 4,152 2,719 2,810 1,499

Overall (excluding IP) 960,135 852,987 89,397 66,857
Overall 1,586,719 1,447,004 359,374 306,554

worth noting that IP information, such as city, region, and country,

also provides a considerable amount of information.

3.2 Dynamics Dataset

Our dynamics dataset contains 1,329,927 distinct browser instances:

661,827 of them visit the deployment website for more than one

time, which produces 960,853 pieces of dynamics information. In

the rest of the section, we !rst present statistics of browser instances

and then statistics of dynamics.

3.2.1 Statistics of Browser Instance. We now show some statistics

of browser instances in the dynamics dataset.

• User ID vs. Browser ID vs. Cookie. The top bar of Figure 3 shows

that approximately 86% user IDs (anonymized usernames) map

to only one browser ID while the rest maps to more than one

1 2 >3

of Browser IDs
 per User ID

of Cookies
per Borwser ID

 0 0.2 0.4 0.6 0.8 1

Figure 3: A Breakdown of the Number of Browser IDs per

User ID and the Number of Cookies per Browser ID (For ex-

ample, the purple bar with no "lls in “# Browser IDs per

User ID” means the percentage of all user IDs that have one

browser ID.).

because those users visit our deployment website frommore than

one browser instance. The bottom bar of Figure 3 shows that

68% of browser instances have only one cookie; to the opposite,

about 32% of browser instances have more than one cookie. As

stated, our manual investigation with controlled testing of Safari

Browser shows that intelligent tracking prevention and private

browsing are the major reasons of clearing cookies.

• Browser instance visits over time. Figure 4 shows the number

of browser instances broken down by !rst-time and returning

visitors across our measurement period. A browser instance is

marked as a returning visitor, if its browser ID has been seen

in our dataset before. The !rst thing worth noting is that the

number of total visits by browser instances in the !rst three

months is higher than the rest. The reason is that our deployment

website in general has more visitors during the holiday season,

which leads to the visit number decline in our dataset during the

remaining months. Second, returning browser instances make

up almost half of all the visitors each day—this fact indicates

that our deployment website has a considerable amount of loyal

users for us to collect enough dynamics data.

• Browser instances broken down by browser and OS types. We also

show the number of browser instances broken down by browser

types in Figure 5 and by OS types in Figure 6. Figure 5 shows

that our visitors are well distributed into di"erent browser types

on both mobile and desktop platforms, i.e., being a good repre-

sentation of the Internet users; Figure 5 shows that Microsoft

Windows is still the mostly used OS in our dataset and the next

comes with iOS, which is used in both iPhones and Apple com-

puters. Figure 6 shows that the percentage of browser instances

using Android OS is on par with iOS. The number of Ubuntu and

Windows Phones is too small to be shown in the graph.

• Fingerprint stability per browser instance. We break down browser

instances (browser IDs) based on the number of visits and the

number of dynamics in Figure 7. When a browser instance visits

our deployment website for three or four times, about half of

browser instances remain stable without !ngerprints changed.

The percentage keeps decreasing as the number of visits increases

and then stays at about one third.

3.2.2 Classification of Fingerprint Dynamics. We classify !nger-

print changes into three categories based on their causes and show

them in Table 2:

• Browser or OS Updates. Browser or OS updates, taking up to

about 30% of total changes, refer to the client browser or OS

updates to a new version. Such an update may lead to a change

IMC ’20, October 27–November 29, 2020, Virtual Event, USA Song Li and Yinzhi Cao

0

5,000

10,000

15,000

20,000

25,000

30,000

!"#
$%&'

!"#
$%&(

!"#
$%&)

!"#
$%&'

!"#
$%&(

!"#
$%&)

!"#
$%&*

!"#
$%&+

N
u
m

b
e
r

o
f
B

ro
w

s
e
r

In
s
ta

n
c
e
s

Date

First-time
Returning

Figure 4: The number of !rst-time and

returning browser instances over the en-

tire deployment period

0

5,000

10,000

15,000

20,000

25,000

30,000

N
u
m

b
e
r

o
f
B

ro
w

s
e
r

In
s
ta

n
c
e
s

Samsung Internet
Chrome Mobile

Firefox
Safari Mobile

Chrome

!"#
$%&'

!"#
$%&(

!"#
$%&)

!"#
$%&'

!"#
$%&(

!"#
$%&)

!"#
$%&*

!"#
$%&+

Date

Figure 5: The number of browser in-

stances broken down into di"erent

browser types

!

"#!!!

$!#!!!

$"#!!!

%!#!!!

%"#!!!

&!#!!!

'
(
)
*
+
,-
.
/-
0
,.
1
2
+
,-
34
2
56
4
7
+
2

867-9:-;
<4=,.>=

>9:
?>4=.12

!"#
$%&'

!"#
$%&(

!"#
$%&)

!"#
$%&'

!"#
$%&(

!"#
$%&)

!"#
$%&*

!"#
$%&+

@65+

Figure 6: The number of browser in-

stances broken down into di"erent OS

types

0

50,000

100,000

150,000

200,000

250,000

3 4 5 6 7 >8

N
u

m
b

e
r

o
f

B
ro

w
s
e

r
ID

s

Number of Visits

Number of Dynamics: 0
1
2
3

4
5
6

>6

Figure 7: A breakdown of the number of browser IDs based

on the number of dynamics and the number of visits (For

example, the solid, green bar above 3 on the x-axis indicates

the number of browser IDs satisfying the following two con-

ditions: (i) a browser instance visits our deployment website

for only three times and (ii) the !ngerprint of that browser

instance changes only once—i.e., containing only one piece

of dynamics information.)

in the user agent string and other correlated features, such as

canvas rendering and the font list. We !rst look at OS updates:

iOS updates is the single largest portion, i.e., over 95%, of all the

updates, because all the subversions of iOS are included in the

user agent string. As a comparison, browser updates spread more

evenly across di"erent browsers based on their use percentage. It

is worth noting that the percentage of browser instances with OS

and browser updates is relatively small, i.e., only 8.1% and 13.81%

respectively. That is, many browsers or OSes are not constantly

updated, which may lead to corresponding security issues.

• User Actions. Some user actions may lead to !ngerprint dy-

namics, e.g., zooming in/out of the current page changes the

screen resolution provided by the browser. It is interesting that

only 13.4% of total browser instances have user-action-related

dynamics as opposed to 31.07% of total dynamics: Such a big gap

shows that a large portion of users do not perform actions that

can change !ngerprint, but if a user does perform an action, it is

very likely that she may do it again in the future. One big portion

of dynamics related to user actions is timezone change, taking

up 40.49% of total browser instances in this category, which is

caused by a user movement from one location to another. The

reason that timezone change happens often is that our deploy-

ment website locates in Europe and many users travel from one

country to another for work.

• Environment Updates. When other software co-located with the

browser instance is updated, browser !ngerprints may change

as well. First, some software updates, such as Microsoft O#ce

and Adobe Acrobat Readers, may introduce new fonts to the OS—

about 6.74% of environment updates belong to such category.

Second, one big subcategory of environment updates is due to

the change of emojis—87.6% of canvas rendering result updates

are caused by rendering emojis rather than texts. Lastly, other

environment factors, such as audio card information, system

languages, and color depth may change as well. It is also worth

noting that the percentage of browser instances with environ-

ment updates, i.e., 5.57%, is also the smallest compared with other

causes, although the percentage of dynamics with environment

updates is similar to the one of OS updates. The reason is that

environment updates have to happen when certain environment,

e.g., a speci!c type of software, co-exist with the browser. Take

Adobe Software for example—if someone does not use Adobe

Acrobat Reader, such environment updates will not exist for that

browser instance.

We also listed composite changes that lead to !ngerprint changes.

The percentage of such composite changes aligns with the percent-

age of each single category because all the changes are independent.

For example, user actions and browser updates are two major cate-

gories and therefore the combination of these two is also the largest

category among all the possible combinations. It is worth noting

that the combination of browser and OS updates are not much,

because many browser and OS updates, especially on iOS platform

for Safari, is related and counted as OS updates already.

3.2.3 Breakdown of Dynamics by Features. We break down the

dynamics by di"erent features and also show them in Table 1 under

the dynamics column. In total, we have observed 359,374 pieces

of distinct dynamics information; interesting, 306,554 of them, i.e.,

85%, are unique. Additionally, there are several things worth noting,

especially when comparing with the static values of each feature.

Who Touched My Browser Fingerprint? IMC ’20, October 27–November 29, 2020, Virtual Event, USA

Table 2: A Breakdown of Fingerprint Changes (The total

percentage of !ngerprint changes adds up to 100%, and the

union of all browser instances equals to the percentage of

browser instances with !ngerprint changes).

Operation Category % of Changes % of Browser ID

OS Updates +11.26% 8.10%

iOS +11.26%×96.31% ×95.67%
Android 1.71% 2.20%
Mac OS X 1.37% 1.60%
Windows 0.54% 0.50%
Others 0.07% 0.03%

Browser Updates +19.69% 13.81%

Chrome ×39.01% ×34.67%
Firefox 16.95% 19.39%
Chrome Mobile 26.28% 26.25%
Samsung Internet 8.09% 9.40%
Opera 2.67% 2.45%
Edge 1.94% 2.53%
Firefox Mobile 1.76% 1.96%
Safari 1.20% 1.37%
Others 2.1% 1.98%

User Actions +31.07% 13.40%

Change timezone ×19.43% ×40.49%
Private browsing mode 41.01% 33.85%
Zoom in/out webpage 17.27% 11.37%
Enable/disable Flash 13.63% 7.02%
Fake supported languages 6.00% 8.10%
Fake screen resolution 2.62% 3.76%
Switch monitor/change resolution 2.45% 2.80%
Browser/OS inconsistency 1.14% 1.3%

Request desktop website 38.52% 47.18%
Others (e.g., fake agent string) 61.48% 52.82%

Install plugins 1.27% 1.12%
Enable/disable LocalStorage 0.64% 1.19%
Enable/disable Cookie 0.41% 0.71%

Environment Updates +11.91% 5.57%

Software Updates (fontlist) ×6.74% ×8.06%
MS O!ce 27.08% 36.91%
Adobe Software 33.39% 23.79%
O!ce and Adobe Software 1.04% 1.35%
Others 38.49% 37.95%

Update Canvas rendering 53.38% 53.20%
Emoji update 87.60% 87.15%
Text update 12.40% 12.85%

Audio update 39.83% 40.57%
HTTP Header Language update 1.77% 2.68%
System Language update 0.74% 0.69%
Screen color depth update 0.22% 0.40%
GPU Render update 0.20% 0.32%

Browser Updates + User Actions +10.19% 8.78%

OS Updates + User Actions +5.17% 4.64%

Browser + Environment Updates +1.83% 1.54%

Other Combinations +8.88% 6.48%

Total =100% 62.32%

First, the list of fonts, a highly "ngerprintable feature with many

distinct and unique values, stays relatively stable in terms of dy-

namics. We only observe 6,763 distinct dynamic values as opposed

to 115,128 distinct static ones. That is, the list of fonts is a relatively

good feature for browser "ngerprinting. Interesting, even if the list

of fonts changes, it is highly likely that the changes are unique as

well: 5,056 out of 6,763, i.e., 74.8% of dynamics, is unique, which

means that font update will also reveal the client browser with high

probability.

Second, these features that are in#uenced by user actions have

more dynamic values when compared with their static ones. Such

features include IP features, timezone, screen resolution, and pixel

(a) Canvas Rendering Result on Sam-
sung Browser

(b) Pixel di"erence between version
5.4 and 6.2 (highlighted in red)

Figure 8: Samsung Browser version 6.2 introduces a new

emoji that is also visible from a Google Chrome Browser

co-installed with the Samsung Browser (The di"erence be-

tween those two emojis is the red-color part, i.e., a smiling

face emoji shown in Sub!gure (b))

ratio. Take screen resolution—which is in#uenced by a user zooming

in or out the webpage—for example. It has 139 static values but 273

dynamics. Similarly, timezone has 38 static values but 314 dynamics.

The reason is that when a feature is in#uenced by users, the change

is usually bi-directional and has less restriction. That is, the value

of that feature may change from one value to any in the set. For

instance, users are free to move from one location to any place

in the world, thus causing a possible dynamic value for timezone

and IP-related locations. As a comparison, the dynamics for screen

resolution has more restrictions. Although users are free to zoom

in or out a web page, the screen ratio stays the same after such

operation. Therefore, the dynamic to static value ratio for screen

resolution is also smaller than that of timezone.

Third, hardware-related features, such as these used in browser

ID, are relatively stable, i.e., with very few dynamics. All the dy-

namics are special cases in which we need to link two browser IDs

together as we mentioned in the browser ID generation.

Lastly, the number of dynamics is usually a fraction of, or on

par with, the static values for the rest of features. The reasons

are twofold. (i) Most features are stable, i.e., many static values

are not involved in a dynamic one. (ii) Some "ngerprint changes

are restricted, e.g., an unidirectional one. Take an OS update for

example, which happens only from a lower version to a higher

version. (We do not observe that anyone downgrades their OS in

our dataset.) That is, two static values map to only one dynamic

one.

4 INSIGHTS

In this section, we present several insights when observing our raw

and dynamics dataset, and then give some advices based on each

insight to browser vendors, users or "ngerprinting tool developers.

Insight 1: Browser !ngerprints, particularly the dynamics,

reveal privacy- or security-related information.

Insight 1.1: System-provided emojis may leak security patches

involved in OS updates.

We "nd that system-provided emojis may be used to infer se-

curity related patch, such as those in OS updates. In particular,

we list two cases in which browser or OS updates lead to emoji

changes—i.e., in other words, such emoji changes can be used to

infer corresponding software updates involving security patches.

• Emoji changes in Mobile Google Chrome caused by Samsung

Browser Update. A Samsung Browser update is observable in

Google Chrome canvas rendering results. Speci"cally, Samsung

Browser 6.2 introduces a new emoji that has a slight change

of the smiling face as shown in the pixel-by-pixel di$erence of

IMC ’20, October 27–November 29, 2020, Virtual Event, USA Song Li and Yinzhi Cao

Figure 8. Such update is also observable if Google Chrome renders

the smiling face emoji on a canvas. That is, to summarize it, if

one observes a canvas rendering update like Figure 8 in Google

Chrome Mobile, we can infer that the user updates his Samsung

Browser installed on the same device to 6.2, and otherwise not.

We !nd 2,298 Chrome instances in our dataset, which leaks such

private information.

• Emoji changes in Desktop Google Chrome caused by Windows

7 Update. One Microsoft Windows 7 update on April 22, 2014

installs a set of new emojis to the OS by introducing IE 11, and

such emoji updates are observable from another browser, such

as Chrome. We only observe 9 browser instances with such

emoji updates, because the update was released back in 2014.

Interestingly, we also observe 6,968 browser instances with the

old emoji, i.e., they have not applied that speci!c old update,

leading many potential security vulnerabilities, i.e., those that

are found after that update, unpatched. Note that browsers on

Windows platform only indicates the big version, i.e., 7, 8, or 10,

of OS. That is, such update information is supposed to hide from

a website visited by the user.

Advice 1 [Browser Security]: Browsers should provide their

own emojis to avoid leaking whether security patches are

applied.

Insight 1.2: System-provided fonts may leak updates and installa-

tions of software, such as Microsoft O!ce.

System-provided fonts can be used to infer software updates

and installations. If knowing software updates and installation,

an attacker can launch targeted attacks, such as macro malware

aiming at Microsoft Word. We now list several examples of such

font-related inference below:

• Font changes caused by Microsoft o"ce update. Our reasoning

results show that one particular added font in any browser can re-

veal the information about a Microsoft O"ce update. Speci!cally,

the release of three versions of Microsoft O"ce, i.e., Version 1711

(Build 8730.2175), Version 1708 (Build 8431.2153), and Version

1705 (Build 8201.2217) on January 9, 2018, will add a new font

called “MT Extra”, which is observable in a browser !ngerprint.

Therefore, the addition of an “MT Extra” in early 2018 is a strong

indication that the device has installed Microsoft O"ce and up-

dated it accordingly. We !nd that 1,199 browser instances added

the font “MT Extra”. Note that this is just a subset of browser

instances that applied the update because if the OS has already

installed “MT Extra”, e.g., by other software before the update,

we will not observe the change.

• Font changes caused by Microsoft O"ce. Apart from the previ-

ously mentioned O"ce update, the installation of O"ce itself

also introduces new fonts. We !nd 7 browser instances that are

related to the installation of Microsoft O"ce Pro Plus 2013, i.e.,

re#ected in a font list change. Additionally, we observe 50,869

browser instances installed with Microsoft Pro Plus 2013, be-

cause their font list contains corresponding fonts installed by

Microsoft O"ce.

• Font changes caused by WPS O"ce and LibreO"ce. Both WPS

O"ce, an o"ce suite developed by Kingsoft, and LibreO"ce, a

free and open-source o"ce suite, add a new list of fonts to the

system that lead to a !ngerprint change. Note that WPS o"ce

also slightly changes the color of the emoji rendering.

Advice 2 [Browser Security]: Browsers should ship their

own fonts, such as Web fonts, like what Tor Browser does

to avoid leaks of software updates and installations.

Insight 1.3: The rendering e"ects of GPU images can be used to

infer masked hardware information.

The rendering behaviors of GPU can revealmasked GPU infor-

mation. Speci!cally, based on GPU images collected from other

browsers, our correlation analysis !nds that 32% of distinct Firefox

GPU images can be uniquely mapped to one renderer and vendor,

and 38% can be mapped to less than three renderers and vendors. It

is interesting that the inference accuracy for certain GPU types, es-

pecially these dedicated GPU vendors, are very high, because these

GPU rendering behaviors are very di$erent from others when they

try to pursue a high rendering quality. For example, the inference

accuracy for NVIDIA GeForce series is usually larger than 90%,

with GTX 970 as 95.5%. Mali and PowerVR GPUs are very unique

as well, with 96.2% and 92.4% inference accuracy respectively. On

the contrary, the inference accuracy for low-end, integrated GPUs,

such as AMD and Intel ones, are relatively low, which are 20.8%

and 57.4% respectively.

Advice 3 [Browser Privacy]: Browsers, such as Firefox,

should change canvas rendering results as what Wu et

al. [45] do when masking GPU information.

Insight 1.4: IP address change can be used to infer network status,

e.g., the use of VPNs or proxies.

Speci!cally, we can calculate the velocity of the browser instance

based on the IP information, such as the latitude and longitude

provided by the public database, between two consecutive visits.

If the velocity is larger than a threshold, say 2,000 km/h, which

is impossible even by plane, we can consider that the browser

instance adopts network services, such as proxy and VPN, to visit

our deployment website between these two visits. Our evaluation

shows that the velocities of most browser instances are small, i.e.,

less than 150 km/h. There are no browser instances in our database

moving between 150 km/h and 2,000 km/h—this is probably because

usually the proxy or VPN is located far from the user. We have

observed 2,916 browser instances moving over 2,000 km/h, which

are considered as using VPN or proxy service. We look at manually

some cases and verify that they are indeed using network service.

For example, one user was using a Russian IP address at Kaluga;

one day later, her IP address was changed to one at Lagos, Nigeria,

Africa; and then two hours later, her IP address went back to the !rst

one. The moving speed is way beyond 2,000 km and her second IP

address, after manual veri!cation, belongs to a public VPN service.

Advice 4 [User Privacy]: Users may want to avoid visiting

a website with and without VPN/proxy service at the same

time.

Insight 2: The F1-score andmatching speed of prior evolution-

aware!ngerprintwork degrade signi!cantly in a large-scale

setting.

Who Touched My Browser Fingerprint? IMC ’20, October 27–November 29, 2020, Virtual Event, USA

Figure 9: Matching Time of FP-Stalker against One Finger-

print (Note that matching time greater than 100 ms is con-

sidered unacceptable because ads real-time bidding (RTB)

requires that an advertiser provides a decision under 100

ms [42, 48], a hard limit enforced by many ad exchange net-

works like Google)

We evaluate state-of-the-art evolution-aware !ngerprinting tool,

FP-Stalker, using the dataset collected in our measurement study.

All the experiments are performed on a powerful server with 192 GB

RDIMM 2666MT/s Dual Rank memory and Intel® Xeon® E5-2690

v4 2.6GHz CPU. There are two variations of FP-Stalker, rule-based

and learning-based. We adopt all the original rules from the paper

and retrained the learning-based FP-Stalker as the F1-Score of the

original model is very low (smaller than 50%) on our dataset.

We look at two important metrics of FP-Stalker:

(i) Matching Speed. Figure 9 shows the average matching time

of FP-Stalker against one !ngerprint, which increases linearly as

the number of !ngerprints. We would like to point out that the

matching speed of FP-Stalker, no matter rule- or learning-based, is

unacceptable in this large-scale setting. The reason is that many ad

exchange networks like Google requires that an advertiser provides

a decision under a hard limit, which is 100 ms [48].

(ii) F1-Score, Precision and Recall. Figure 10 shows the precision,

recall, and F1-Score of FP-Stalker as the number of !ngerprints

increases: All three numbers drop linearly. We now list some false

positive (FP) and negative (FN) examples below:

• FN: A desktop page on a mobile device. FP-Stalker fails to

link those two !ngerprints in Figure 11 (a), as the user agent

changes drastically from a mobile Chrome (Fingerprint 1) to a

Linux Desktop (Fingerprint 2).

• FN: Storage place disabled on Chrome. Figure 11 (b) shows an

FN example of storage places, such as cookies and localStorage,

are disabled on Chrome, which lead to a change from Fingerprint

1 to 2.

• FP: Two browser instances with di"erent CPU cores. Figure 11

(c) shows an FP example of two browser instances with almost

exactly the same !ngerprint but di"erent CPU cores. This change

is very unlikely to our human being, but will be considered as

possible by FP-Stalker.

• FP: Two browser instances with di"erent device types. Figure 11

(d) shows an FP example of two browser instances with just

di"erent device types. Again, this change is small, i.e., from J330

to G920, but very unlikely.

Table 3: Case Studies on Feature Correlation with Browser

or OS Updates (Emoji type means a redesign of emoji, and

emoji rendering is some subtle rendering detail changes;

text width means the width of text rendered in browser

canvas, and text detail is some subtle text rendering detail

changes.)

Update Platform Correlated Feature: Changed Value

Browser Update on Mobile Phone

Mobile Safari 10→11 iOS Canvas (C): Emoji rendering
Mobile Safari 11→12 iOS Font (F): Remove two fonts
Samsung 5→6 Android C: Emoji rendering
Samsung 6→7 Android C: Text width and emoji rendering
Mobile Firefox 56→57 Android C: Text width

Browser Update on Desktop

Safari 10→11 Mac OS X F: Remove/add fonts
Safari 10→11 Mac OS X C: Emoji rendering
Firefox 60→61 Ubuntu C: Emoji type
Chromium 62→63 Ubuntu Plugin (P): Remove one plugin

OS Update on Mobile Phone (* means any version lower than the update target)

Android *→4.4.2 Android C: Samsung emoji rendering
Android *→8.0.0 Firefox C: Text width and emoji type
Android *→8.0.0 Samsung C: Text width and emoji rendering
Android *→8.0.0 Chrome C: Text detail
iOS *→10.3.3 Safari C: Emoji rendering
Blackberry OS *→10.3.3 Webkit C: Text detail

OS Update on Desktop

Windows *→10 Maxthon C: Text width and emoji type
Mac OS X *→10.10.4 Safari C: Emoji rendering
Mac OS X *→10.13 Firefox C: Text width

Advice 5 [Better Fingerprinting Tool]: Existing !ngerprint-

ing tools need to consider semantics of browser dynamics

to improve its precision, recall and F1-Score.

Advice 6 [Better Fingerprinting Tool]: Existing !ngerprint-

ing tools may consider caching to improve its matching

speed and meet the real-time requirement.

Insight 3: The dynamics of some browser features are corre-

lated although the features themselves are not.

We show that although some features are not correlated directly,

the dynamics of those features may be implicitly. Our method-

ology of !nding such correlation is as follows. We !rst rank all

the dynamics based on their popularity, i.e., the total number of

appearance, and then !nd dynamics in which two features come

together. We consider these two feature dynamics are potentially

correlated if these two features either do not come separately in

the dynamics database or appear less popular than the combined

one. We then manually inspect these two feature dynamics to un-

derstand whether they are correlated. Here are some examples of

such implicit correlations:

• Example 1: Cookie disabling/enabling is correlated with local-

Storage in Chrome Browser. That is, when cookie is enabled or

disabled in Chrome, localStorage will change as well. In total,

we have observed 347 Chrome instances that disable cookie and

localStorage together and 226 that enable them together. The

reason is that Chrome provides a single checkbox to disable

or enable both cookie and localStorage; interestingly, the dis-

abling/enabling of cookie and localStorage is not correlated in

IMC ’20, October 27–November 29, 2020, Virtual Event, USA Song Li and Yinzhi Cao

!

!!!!!!!

(a) F1-Score

!

!!!!!!!

(b) Precision

!

(c) Recall

Figure 10: F1-Score, Precision and Recall of FP-Stalker for Top 10 Prediction (Note that we run both learning- and rule-based

FP-Stalker for 240 hours, which is ten full days; learning-based FP-Stalker is not scalable to a large dataset as acknowledged

in the paper as well).

Fingerprint 1:

User Agent: Mozilla/5.0 (Linux; Android 9; SM-N960U)

AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/77.0.3865.92 Mobile Safari/537.36

...

Fingerprint 2:

User Agent: Mozilla/5.0 (X11; Linux x86_64)

AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/77.0.3865.92 Mobile Safari/537.36

...

(a) A desktop page on a mobile browser

Fingerprint 1:

...

Support of Cookies: Yes

Support of localStorage: Yes

...

Fingerprint 2:

...

Support of Cookies: No

Support of localStorage: No

...

(b) Storages Disabled on Chrome

Fingerprint 1:

...

CPU Cores: 4

...

Fingerprint 2:

...

CPU Cores: 2

...

(c) Di!erent CPU
Cores

Fingerprint 1:

User Agent: Mozilla/5.0

(Linux; Android 7.0; SAMSUNG SM-J330F Build/NRD90M)

AppleWebKit/537.36 (KHTML, like Gecko)

SamsungBrowser/6.2 Chrome/56.0.2924.87

Mobile Safari/537.36

Fingerprint 2:

User Agent: Mozilla/5.0

(Linux; Android 7.0; SAMSUNG SM-G920F Build/NRD90M)

AppleWebKit/537.36 (KHTML, like Gecko)

SamsungBrowser/6.2 Chrome/56.0.2924.87

Mobile Safari/537.36

...

(d) Two Browser Instances on Di!erent Devices

Figure 11: False Positives and Negatives of both Rule- and Learning-based FP-Stalker ((a) and (b) are false negatives, as they

belong to the same browser instance but are not linked; (c) and (d) are false positives, as they are from di!erent browser

instances but are linked together. We skip the same features between each 1 and 2 pair).

Firefox Browser, because there are two places to perform these

two actions.

• Example 2: The change of DirectX API levels in Firefox is cor-

related with Firefox updates among 57–60 on certain devices.

Speci!cally, we !nd the DirectX API level is downgraded to 9EX

when Firefox is updated to 58 or 59 on certain devices, and then

the level is back to 11 when Firefox is updated to 60. We suspect

that Firefox 57, a relatively buggy version [9], has some problem

using DirectX 11 on certain devices and therefore it falls back to

DirectX 9EX on Firefox 58 and 59. Then, Firefox 60 !xes some

bugs and therefore reuses DirectX 11.

• Example 3: The change of DirectX API levels in Chrome is cor-

related with Audio Card Sample Rate. Speci!cally, we !nd that

when Chrome’s GPU renderer is updated from Direct3D 9EX

to 11 on certain devices, the sample rate of its audio card will

also be updated from 44,100 to 48,000. The reason is that proba-

bly Chrome adopts DirectX to manage audio card and therefore

when DirectX is updated, audio card information is as well.

Except for those implicit correlations, Table 3 also shows cor-

relations related to browser or OS updates. There are three major

types of correlated features: canvas rendering results, font list and

plugin list. The canvas rendering results is the most common corre-

lation, because many browser and OS updates include new emojis

or text rendering. Speci!cally, we classify the dynamics in canvas

rendering results into four subtypes: text width, text details, emoji

types and emoji rendering. Text width means the width of the text

part of canvas rendering, which may changes if one letter is ren-

dered thinner or thicker; text details means some texture details of

the letter rendering; emoji types means the introduction of a new

emoji type; emoji rendering means some small changes, such as

smoothing of emojis.

Advice 7 [Better Fingerprinting Tool]: Existing "ngerprint-

ing tools may include implicit or explicit feature correla-

tions to improve linking performance.

Insight 4: The timing of some "ngerprint dynamics are cor-

relatedwith real-world events, such as the release of browser

or OS updates.

Speci!cally, we show such trends in Figure 12, where the x-axis

is our deployment period and y-axis is the percentage of browser

instances with corresponding browser update related dynamics. For

example, 66 in Chrome sub-!gure refers to !ngerprint dynamics

that are related to an update to Chrome version 66. We marked each

Who Touched My Browser Fingerprint? IMC ’20, October 27–November 29, 2020, Virtual Event, USA

0%

20%

40%

60%

80%

100%

Chrome 63
Chrome 64

Chrome 65
Chrome 66

Chrome 67

Others
67

66
65

64
63

62

0%

20%

40%

60%

80%

100%

Firefox 58 Firefox 59 Firefox 60 Firefox 61

P
e
rc

e
n
ta

g
e
 o

f
C

h
a
n
g
e
d
 B

ro
w

s
e
r

In
s
ta

n
c
e
s

Others
61

60
59

58
57

52

0%

20%

40%

60%

80%

100%

iOS 11.2.1
iOS 11.2.2 iOS 11.2.5

iOS 11.2.6
iOS 11.3 iOS 11.4

11.4
11.3

11.2.6
11.2.5

11.2.2
11.2.1

Others

!"#
$%&'

!"#
$%&(

!"#
$%&)

!"#
$%&'

!"#
$%&(

!"#
$%&)

!"#
$%&*

!"#
$%&+

Date

Figure 12: Percentage of browser instances with dynamics

related to browser updates over the entire period of our de-

ployment

important real-world event during our deployment period, such as

Chrome updates between 63 and 67, Firefox updates between 58

and 61, and Safari updates between 10.1.2 and 11.1.

There are two things worth noting. First, after each browser

release, there emerges a peak of !ngerprint dynamics that lead to

an update to the latest version. This trend is the same for all three

browsers marked in the !gure. Such updates are not immediate,

which usually take months to !nish. Second, the updates for Safari

is usually slower than the ones for Firefox and Chrome. The reason

is that Firefox and Chrome updates are automatic—a user just needs

to restart the browser and update their browsers. As a comparison,

Safari updates require a user to click several buttons in app store

and therefore some users are reluctant of doing so.

Advice 8 [Better Fingerprinting Tool]: Existing !ngerprint-

ing tools may consider the timings of real-world events to

improve linking performance.

5 DISCUSSIONS

We discuss several commonly-raised issues, such as ethics and fea-

ture inconsistency, in this paper. First, we obtained approval from

our Institutional Review Board (IRB) prior to conducting the re-

search. Our collected data via the deployment website may contain

human information. Speci!cally, the deployment website has an

agreement, i.e., a div element pointing to a legal document, stating

that the website may collect user information including browser

!ngerprints and asking the users for their consent. During the sign-

up stage, the users will also see an additional webpage asking for

their consent of collecting !ngerprint information. Since all the

!ngerprinting data are accompanied with an anonymized user ID,

all the users in our study have at least seen the agreement twice

and agreed to be collected. That said, all the ethic issues are handled

through the deployment website via a standard procedure and the

collection process obeys the EU privacy legislation, e.g., GDPR,

which states that websites need to get visitors’ consent to store or

retrieve information on a computer, smartphone or tablet.

Second, feature inconsistencies have minimum impacts on our

measurement study due to their small numbers. Speci!cally, a

browser may provide a piece of false, or called inconsistent, in-

formation in our study and our tool actually adopts this type of

inconsistency as a feature in the !ngerprint. The number of such

inconsistencies is very small (less than 1% of browser instances).

Now let us look at some of these reasons that lead to inconsistencies.

First, the user may want to request a di"erent version of a web page

on the device, e.g., a mobile device requesting for a desktop page.

This is the major reason in our measurement study that leads to

inconsistency and our analysis has already considered such scenar-

ios. Second, a browser, such as Tor Browser and Brave Browser, or

a privacy-preserving browser extension may conceal the browser’s

identity due to privacy reasons. The number of users having these

browsers or extensions are relatively small, thus having minimum

impacts on our measurement results. We will leave a measurement

of such privacy-preserving tools as our future work.

Third, we discuss the limitations of adopting browser IDs as

the ground truth. Although we consider it as a big improvement

over user ID and cookies, the adoption of browser ID leads to false

positives and negatives. For example, if one user has two identical

devices, we will falsely assign the same browser ID to browsers on

those two devices. For another example, there might exist some

rarely happened user agent changes that are not captured during

our study, leading to false negatives.

Fourth, we discuss attack tra#c on the deployment website—This

is an orthogonal problem to the paper. Because the recorded tra#c

belongs to users that are logged into the websites, the possibility of

attack tra#c, such as credential stu#ng, is low. Speci!cally, most

tra#c related to credential stu#ng is trying to log in with account

credentials instead of visiting the website normally.

Lastly, we talk about the usage of browser !ngerprints in the

real-world. Although it is well known that browser !ngerprints can

be used for web tracking, which may violate user privacy, recent

adoption of browser !ngerprinting is sometimes to the opposite in

the realm of two factor authentication and bot detection [4]. The

intuition is simple: Browser !ngerprints, just like cookies, have

two sides: one for tracking and the other for authentication. In

this measurement paper, we took a neutral view on how browser

!ngerprints are used, but focused on how !ngerprints may change

over time. It is the responsibility of those who deploy !ngerprinting

to decide its usage and we give advices on both sides in the paper.

6 RELATED WORK

In this section, we discuss related work including the closest one

discussing !ngerprint evolution/dynamics, web tracking and anti-

tracking.

6.1 Fingerprint Evolution/Dynamics

FP-Stalker [40] is the !rst work that considers !ngerprint evolution

and designs an approach to link di"erent browser !ngerprints even

if they evolve over time. The major contribution of FP-Stalker is the

design and implementation of novel !ngerprint linking algorithms,

i.e., both rule-based and learning-based approaches. To validate

their algorithms, FP-Stalker involves a relatively small dataset with

1,905 browser instances—as opposed to over 1 million in our paper

and over 300,000 if we only count users visiting the deployment

IMC ’20, October 27–November 29, 2020, Virtual Event, USA Song Li and Yinzhi Cao

website for more than seven times, i.e., following their criteria—

collected from a group of users who install their browser extension.

After that, Pugliese et al. [37] also conduct another small-scale

study with 88,088 !ngerprints belonging to 1,304 users to under-

stand users’ trackability. Together with the study, Pugliese et al.

propose a method, called feature stemming, to improve feature

stability—which performs better than FP-Stalker on the FP-Stalker

dataset. There are two potential issues of feature stemming. First,

we believe that although feature stemming improves stability, there

are still dynamics that need additional linking. Consider the exam-

ple of a user requesting a desktop page on a mobile device. The

user agents of two visits are drastically di"erent, which cannot

be captured by feature stemming. Second, feature stemming, e.g.,

stripping o" version substrings, increases the anonymous set size

of !ngerprints, thus reducing !ngerprintability in general.

As a general comparison with prior works on !ngerprint evo-

lution, our measurement study is in a much larger scale and also

makes observations related to privacy and security, e.g., the leaks

of software updates. Furthermore, our measurement study shows

that both the learning- and rule-based FP-Stalker performs poorly

in terms of F1-Score and matching speed in our large-scale dataset.

6.2 Web Tracking

We present related work in web tracking from two perspectives:

cookie or super cookie-based and then browser !ngerprinting. As

a general comparison, our measurement study is the !rst work

that classi!es and measures dynamics in browser !ngerprinting, a

special, second-generationweb tracking, and then draws interesting

observations, such as dynamics-related privacy leaks.

6.2.1 Cookie or Super Cookie based Tracking. Many measurement

studies have been proposed before on the e"ectiveness or severe-

ness of Web tracking in general, such as these based on cookies

or other server-set identi!ers. For example, Roesner et al. [38] per-

forms a comprehensive measurement study on web tracking and

proposes a classi!cation framework. Lerner et al. [26] conduct an

archaeological study by measuring web tracking from 1996 to 2016

in Internet time machine. Soltani et al. and Ayenson et al. measure

how tracking companies can use non-cookie based stateful tracking

to regenerate deleted cookies [13, 39]. Metwalley et al. [28] adopt

an unsupervised method to detect user identi!ers that could be

adopted for tracking purpose. Krishnamurthy et al. [21–24] gauge

the harm of web tracking and conclude that trackers may obtain

personal information, such as username and emails.

6.2.2 Browser Fingerprinting. Browser !ngerprinting is the second

generation of web tracking. Yen et al. and Nikiforakis et al., as one

of the few early studies, discuss and measure the e"ectiveness of

!ngerprinting [34, 47]. Acar et al. [11] conduct a large-scale study

canvas !ngerprinting, evercookies, and the use of “cookie syncing”.

FPDetective [12] and Fi!eld el al. [19] both focus on the list of font

perspective in browser !ngerprinting, e.g., FPDetective performs a

measurement study of millions of most popular websites using fonts

in the !ngerprints. Similarly, Englehardt et al. [18] also conduct a

very large-scale study on one million websites about browser !nger-

printing, which results in many new features, such as AudioContext.

Cao et al. [16] and Boda et al. [14] study a di"erent angle of browser

!ngerprinting, i.e., cross-browser !ngerprinting. Vastel et al. [41]

study the inconsistencies in browser !ngerprints and shows such

inconsistency brings additional entropy for !ngerprinting. There

are also many works focusing on di"erent perspectives of browser

!ngerprinting, such as canvas-based [30], JavaScript engine [29, 31],

and hardware-based [32]. Particularly, Laperdrix et al. [25] designs

a website, called AmIUnique, and conduct a comprehensive study

on 17 attributes of browser !ngerprinting.

In terms of measurement study, Gómez-Boix et al. [20], similar

to our study, deployed a !ngerprinting tool on a real-world website

and studied the e"ectiveness of browser !ngerprinting. Note that

their study adopts cookies as identi!ers to di"erentiate browser

instances. However, to the contrary, our study reveals that both

users and browsers, such as Safari powered by Intelligent Tracking

Preventing, do delete cookies very often and therefore cookies

are unreliable in terms of serving as a ground-truth identi!er. In

addition, their study focuses on the !ngerprinting e"ectiveness but

not dynamics.

6.3 Anti-tracking

We also discuss existing anti-tracking from two aspects: defense

against cookie-based and anti-!ngerprinting.

6.3.1 Defense against Cookie- or Supercookie-based Tracking. Share-

MeNot [38] is a browser add-on to defend against social media

button tracking, such as Facebook Like button. Private browsing

mode [44, 46] creates an isolated browser pro!le from the normal

ones so that the web user’s information, such as cookies, are not

preserved. Similarly, TrackingFree [35] proposes to isolate user’s

website visits via an indegree-bounded graph. The Do Not Track

(DNT) [43] header, an opt-out approach, allows a user to ask web-

sites not to track. On the other hand, Meng et al. [27] design a

client-side policy that empowers users to control whether to be

tracked. Intelligent Tracking Prevention [6] is an anti-tracking ap-

proach proposed by WebKit to automatically purge out tracking

cookies based on an ML-based detector.

6.3.2 Anti-fingerprinting. Tor Browser [36], a privacy-preserving

browser, make many !ngerprinting features uniform so that they

stay the same across browsers. In addition to Tor Browser, which

strictly pursue privacy over functionality, some other browsers

often provide a privacy-enhancing mode to protect users from

browser !ngerprinting. For example, Brave Browser [1] provides a

!ngerprinting protection mode and Firefox provides Tracking Pro-

tection in its private browsing mode. In addition to browsers, some

browser add-ons, such as Canvas Defender [2], also provide protec-

tions against !ngerprinting by adding noises. The research com-

munity also works on anti-!ngerprinting works. PriVaricator [33]

adds randomized noise to !ngerprinting results so that a tracker

cannot obtain an accurate !ngerprint. Deterministic Browser [15],

is similar to Tor Browser, but mostly focuses on and defends against

timing-based !ngerprinting. Recently, W3C also introduces a new

group note [7] with several suggested practices to browser vendors

on the mitigation of browser !ngerprinting.

Who Touched My Browser Fingerprint? IMC ’20, October 27–November 29, 2020, Virtual Event, USA

7 CONCLUSION

Browser !ngerprints are dynamic, i.e., they evolve over time when

users update browsers and OS, or even just interact with their

browsers. Such !ngerprint dynamics will bring inaccuracies for

existing !ngerprinting tools to track web users. In this paper, we

perform the !rst large-scale measurement study on the dynamics

of browser !ngerprints by deploying a customized !ngerprinting

tool at a real-world website and collecting millions of data over

an eight-month period. We then process the collected raw data by

generating a dynamics dataset with browser instances represented

by browser ID, i.e., a combination of an anonymized version of

username provided by the deployment website and some stable

browser features.

Our results show that !ngerprint dynamics can be classi!ed

into three major categories based on their root causes: browser

or OS updates, user actions, and environment updates. Our study

further yield several new insights: (i) !ngerprint dynamics may leak

security- or privacy-related information, (ii) prior evolution-aware

!ngerprinting tools, e.g., FP-Stalker, perform poorly in a large-scale,

real-world setting, (iii) some unrelated !ngerprint features may be

correlated in a piece of dynamics, and (iv) !ngerprinting dynamics

can be correlated with real-world events like browser or OS updates.

We also give several pieces of advices to browser vendors and users

on security and privacy as well as evolution-aware !ngerprinting

tool developers on improving the linking accuracy and speed.

In the future, we believe that it would be interesting to study

the trade-o" between uniqueness and linkability of browser !nger-

prints on our large-scale dataset. We would like to design a better

!ngerprinting tool that balances these two important metrics in

browser !ngerprinting because uniqueness de!nes to what extent

the tool can track a browser instance and linkability de!nes how

long the tool can track a browser instance.

ACKNOWLEDGEMENT

Wewould like to thank our shepherd, Tobias Bajwa, and anonymous

reviewers for their helpful comments and feedback. This work

was supported in part by National Science Foundation (NSF) grant

CNS-18-54001 and an Amazon Research Award. The views and

conclusions contained herein are those of the authors and should

not be interpreted as necessarily representing the o#cial policies

or endorsements, either expressed or implied, of NSF or Amazon.

REFERENCES

[1] Brave browser. https://brave.com/.
[2] Canvas defender. https://chrome.google.com/webstore/detail/canvas-defender/

obdbgnebcljmgkoljcdddaopadkifnpm?hl=en.
[3] Detecting system fonts without $ash. https://www.bramstein.com/writing/

detecting-system-fonts-without-$ash.html.
[4] Device / browser !ngerprinting - heuristic-based authentication. https://docs.

secureauth.com/pages/viewpage.action?pageId=33063454.
[5] Github repository of our measurement tool. https://github.com/bfMeasurement/

bfMeasurement.
[6] Intelligent tracking prevention. https://webkit.org/blog/7675/intelligent-

tracking-prevention/.
[7] Mitigating browser !ngerprinting in web speci!cations. https://www.w3.org/

TR/!ngerprinting-guidance/.
[8] Modern & $exible browser !ngerprinting library. https://github.com/Valve/

!ngerprintjs2.
[9] Online comments on !refox 57. https://www.cnet.com/forums/discussions/

!refox-57-is-awful/.
[10] Panopticlick: Is your browser safe against tracking? https://panopticlick.e".org/.

[11] Acar, G., Eubank, C., Englehardt, S., Juarez, M., Narayanan, A., and Diaz, C.

The web never forgets: Persistent tracking mechanisms in the wild. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications Security
(2014), CCS ’14, pp. 674–689.

[12] Acar, G., Juarez, M., Nikiforakis, N., Diaz, C., Gürses, S., Piessens, F., and

Preneel, B. FPDetective: Dusting the web for !ngerprinters. In Proceedings
of the 2013 ACM SIGSAC Conference on Computer and Communications Security
(2013), CCS ’13, pp. 1129–1140.

[13] Ayenson, M., Wambach, D., Soltani, A., Good, N., and Hoofnagle, C. Flash
cookies and privacy ii: Now with html5 and etag respawning. Available at SSRN
1898390 (2011).

[14] Boda, K., Földes, A. M., Gulyás, G. G., and Imre, S. User tracking on the web
via cross-browser !ngerprinting. In Proceedings of the 16th Nordic Conference on
Information Security Technology for Applications (2012), NordSec’11, pp. 31–46.

[15] Cao, Y., Chen, Z., Li, S., and Wu, S. Deterministic browser. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, CCS
2017, Dallas, TX, USA, October 30 - November 03, 2017 (2017), pp. 163–178.

[16] Cao, Y., Li, S., andWijmans, E. (cross-)browser !ngerprinting via os and hard-
ware level features. InAnnual Network and Distributed System Security Symposium
(2017), NDSS.

[17] Eckersley, P. How unique is your web browser? In International Symposium on
Privacy Enhancing Technologies Symposium (2010), Springer, pp. 1–18.

[18] Englehardt, S., and Narayanan, A. Online tracking: A 1-million-site mea-
surement and analysis. In Proceedings of the 22Nd ACM SIGSAC Conference on
Computer and Communications Security (2016), CCS ’16.

[19] Fifield, D., and Egelman, S. Fingerprinting web users through font metrics. In
Financial Cryptography and Data Security. Springer, 2015, pp. 107–124.

[20] Gómez-Boix, A., Laperdrix, P., and Baudry, B. Hiding in the Crowd: an Analysis
of the E"ectiveness of Browser Fingerprinting at Large Scale. In WWW2018 -
TheWebConf 2018 : 27th International World Wide Web Conference (Lyon, France,
Apr. 2018), pp. 1–10.

[21] Krishnamurthy, B., Naryshkin, K., andWills, C. Privacy leakage vs. protection
measures: the growing disconnect. In Web 2.0 Security and Privacy Workshop
(2011).

[22] Krishnamurthy, B., and Wills, C. Privacy di"usion on the web: a longitudinal
perspective. In Proceedings of the 18th international conference on World wide web
(2009), ACM, pp. 541–550.

[23] Krishnamurthy, B., andWills, C. E. Generating a privacy footprint on the inter-
net. In Proceedings of the 6th ACM SIGCOMM conference on Internet measurement
(2006), ACM, pp. 65–70.

[24] Krishnamurthy, B., andWills, C. E. Characterizing privacy in online social
networks. In Proceedings of the !rst workshop on Online social networks (2008),
ACM, pp. 37–42.

[25] Laperdrix, P., Rudametkin, W., and Baudry, B. Beauty and the beast: Divert-
ing modern web browsers to build unique browser !ngerprints. In 37th IEEE
Symposium on Security and Privacy (S&P 2016) (2016).

[26] Lerner, A., Simpson, A. K., Kohno, T., and Roesner, F. Internet jones and the
raiders of the lost trackers: An archaeological study of web tracking from 1996
to 2016. In 25th USENIX Security Symposium (USENIX Security 16) (Austin, TX,
2016).

[27] Meng, W., Lee, B., Xing, X., and Lee, W. Trackmeornot: Enabling $exible control
on web tracking. In Proceedings of the 25th International Conference on World
Wide Web (2016), WWW ’16, pp. 99–109.

[28] Metwalley, H., and Traverso, S. Unsupervised detection of web trackers. In
Globecom (2015).

[29] Mowery, K., Bogenreif, D., Yilek, S., and Shacham, H. Fingerprinting infor-
mation in javascript implementations.

[30] Mowery, K., and Shacham, H. Pixel perfect: Fingerprinting canvas in html5.
[31] Mulazzani, M., Reschl, P., Huber, M., Leithner, M., Schrittwieser, S.,Weippl,

E., and Wien, F. Fast and reliable browser identi!cation with javascript engine
!ngerprinting. In W2SP (2013).

[32] Nakibly, G., Shelef, G., and Yudilevich, S. Hardware !ngerprinting using
html5. arXiv preprint arXiv:1503.01408 (2015).

[33] Nikiforakis, N., Joosen, W., and Livshits, B. Privaricator: Deceiving !nger-
printers with little white lies. In Proceedings of the 24th International Conference
on World Wide Web (2015), WWW ’15, pp. 820–830.

[34] Nikiforakis, N., Kapravelos, A., Joosen, W., Kruegel, C., Piessens, F., and

Vigna, G. Cookieless monster: Exploring the ecosystem of web-based device
!ngerprinting. In IEEE Symposium on Security and Privacy (2013).

[35] Pan, X., Cao, Y., and Chen, Y. I do not know what you visited last summer -
protecting users from third-party web tracking with trackingfree browser. In
NDSS (2015).

[36] Perry, M., Clark, E., andMurdoch, S. The design and implementation of the
tor browser [draft][online], united states, 2015.

[37] Pugliese, G., Riess, C., Gassmann, F., and Benenson, Z. Long-term observation
on browser !ngerprinting: Users’ trackability and perspective. Proceedings on
Privacy Enhancing Technologies 2 (2020), 558–577.

IMC ’20, October 27–November 29, 2020, Virtual Event, USA Song Li and Yinzhi Cao

[38] Roesner, F., Kohno, T., andWetherall, D. Detecting and defending against
third-party tracking on the web. In Proceedings of the 9th USENIX Conference on
Networked Systems Design and Implementation (2012), NSDI’12, pp. 12–12.

[39] Soltani, A., Canty, S., Mayo, Q., Thomas, L., and Hoofnagle, C. J. Flash
cookies and privacy. In AAAI Spring Symposium: Intelligent Information Privacy
Management (2010).

[40] Vastel, A., Laperdrix, P., Rudametkin, W., and Rouvoy, R. Fp-stalker: Tracking
browser !ngerprint evolutions along time. In 2018 IEEE Symposium on Security
and Privacy (SP), vol. 00, pp. 54–67.

[41] Vastel, A., Laperdrix, P., Rudametkin, W., and Rouvoy, R. Fp-scanner: the
privacy implications of browser !ngerprint inconsistencies. In Proceedings of the
27th USENIX Security Symposium (2018).

[42] Wang, J., Zhang, W., and Yuan, S. Display Advertising with Real-Time Bidding
(RTB) and Behavioural Targeting. Now Publishers Inc., Hanover, MA, USA, 2017.

[43] Wikipedia. Do Not Track Policy. http://en.wikipedia.org/wiki/Do_Not_Track_
Policy.

[44] Wikipedia. Privacy Mode. http://en.wikipedia.org/wiki/Privacy_mode.
[45] Wu, S., Li, S., Cao, Y., and Wang, N. Rendered private: Making GLSL execu-

tion uniform to prevent webgl-based browser !ngerprinting. In 28th USENIX
Security Symposium (USENIX Security 19) (Santa Clara, CA, Aug. 2019), USENIX
Association, pp. 1645–1660.

[46] Xu, M., Jang, Y., Xing, X., Kim, T., and Lee, W. Ucognito: Private browsing
without tears. In Proceedings of the 22Nd ACM SIGSAC Conference on Computer
and Communications Security (2015), CCS ’15, pp. 438–449.

[47] Yen, T.-F., Xie, Y., Yu, F., Yu, R. P., and Abadi, M. Host !ngerprinting and
tracking on the web: Privacy and security implications. In Proceedings of NDSS
(2012).

[48] Yuan, S., Wang, J., and Zhao, X. Real-time bidding for online advertising:
Measurement and analysis. In Proceedings of the Seventh International Workshop
on Data Mining for Online Advertising (New York, NY, USA, 2013), ADKDD ’13,
ACM, pp. 3:1–3:8.

Who Touched My Browser Fingerprint? IMC ’20, October 27–November 29, 2020, Virtual Event, USA

A DETAILED DYNAMICS LEADING TO

PRIVACY LEAKS

A.1 Leak of the Installation of Microsoft O!ce

Pro Plus 2013

In this subsection, we present the list of fonts (127 fonts in total)

added by the installation ofMicrosoft O!ce Pro Plus 2013 or beyond

below.

“Arial UnicodeMS", “BodoniMTCondensed", “Stencil", “Perpetua

TitlingMT", “Haettenschweiler", “MaturaMT Script Capitals", “Arial

Narrow", “Elephant", “Gill Sans MT Ext Condensed Bold", “Franklin

Gothic Demi Cond", “Bodoni MT", “Palace Script MT", “Modern

No. 20", “Perpetua", “Wide Latin", “Kunstler Script", “Rockwell Ex-

tra Bold", “Bell MT", “Lucida Sans", “Harrington", “MS Reference

Sans Serif", “Lucida Handwriting", “Vivaldi", “Gill Sans Ultra Bold",

“Bookshelf Symbol 7", “Rage Italic", “Agency FB", “Eras Bold ITC",

“Old English Text MT", “Broadway", “Franklin Gothic Book", “Cop-

perplate Gothic Light", “Wingdings 3", “Wingdings 2", “Snap ITC",

“Franklin Gothic Demi", “Forte", “Segoe UI Semilight", “Gigi", “Lucida

Calligraphy", “Arial Rounded MT Bold", “Colonna MT", “Bauhaus

93", “Poor Richard", “Gill Sans MT", “Centaur", “MS Reference Spe-

cialty", “Imprint MT Shadow", “Franklin Gothic Medium Cond",

“Copperplate Gothic Bold", “Playbill", “Harlow Solid Italic", “Foot-

light MT Light", “Calibri Light", “Century Gothic", “Viner Hand

ITC", “Bradley Hand ITC", “Calisto MT", “Eras Light ITC", “MS Out-

look", “Parchment", “Lucida Sans Typewriter", “Bodoni MT Black",

“Engravers MT", “Mistral", “Goudy Stout", “Pristina", “Garamond",

“Book Antiqua", “Brush Script MT", “High Tower Text", “Niagara

Solid", “Ravie", “Gill Sans MT Condensed", “Lucida Fax", “Informal

Roman", “Algerian", “Maiandra GD", “Tw Cen MT Condensed", “Ed-

wardian Script ITC", “Britannic Bold", “OCR A Extended", “Bodoni

MT Poster Compressed", “Tempus Sans ITC", “Eras Demi ITC", “Jok-

erman", “Century", “Niagara Engraved", “Magneto", “French Script

MT", “Tw Cen MT", “Lucida Bright", “Tw Cen MT Condensed Ex-

tra Bold", “Gadugi", “Rockwell Condensed", “Castellar", “Script MT

Bold", “Microsoft YaHei UI", “Freestyle Script", “Blackadder ITC",

“GloucesterMT Extra Condensed", “BernardMTCondensed", “Curlz

MT", “Felix Titling", “Baskerville Old Face", “Vladimir Script", “Rock-

well", “Monotype Corsiva", “Onyx", “Kristen ITC", “Franklin Gothic

Heavy", “Cooper Black", “Bookman Old Style", “Eras Medium ITC",

“Californian FB", “Goudy Old Style", “Gill Sans Ultra Bold Con-

densed", “Papyrus", “Chiller", “Berlin Sans FB Demi", “Showcard

Gothic", “Juice ITC", “Nirmala UI", “Berlin Sans FB", “Microsoft

JhengHei UI", “Century Schoolbook", “MT Extra".

Note that because not all the fonts are collected by our "nger-

printing tool, we use the following list (96 fonts in total) to detect

the installation of Microsoft O!ce.

“Bodoni MT Condensed", “Stencil", “Perpetua Titling MT", “Haet-

tenschweiler", “Matura MT Script Capitals", “Elephant", “Gill Sans

MT Ext Condensed Bold", “Palace Script MT", “Modern No. 20",

“Perpetua", “Wide Latin", “Kunstler Script", “Rockwell Extra Bold",

“Bell MT", “Harrington", “Vivaldi", “Gill Sans Ultra Bold", “Bookshelf

Symbol 7", “Rage Italic", “Agency FB", “Eras Bold ITC", “Old Eng-

lish Text MT", “Broadway", “Copperplate Gothic Light", “Snap ITC",

“Forte", “Gigi", “Rockwell Condensed", “Colonna MT", “Bauhaus 93",

“Poor Richard", “Gill Sans MT", “Centaur", “MS Reference Specialty",

“Imprint MT Shadow", “Copperplate Gothic Bold", “Playbill", “Har-

low Solid Italic", “Footlight MT Light", “Viner Hand ITC", “Bradley

Hand ITC", “Calisto MT", “Eras Light ITC", “Parchment", “Bodoni

MT Black", “Engravers MT", “Mistral", “Goudy Stout", “Pristina",

“Brush Script MT", “High Tower Text", “Niagara Solid", “Ravie", “Gill

Sans MT Condensed", “Informal Roman", “Algerian", “Maiandra

GD", “Tw Cen MT Condensed", “Edwardian Script ITC", “Britan-

nic Bold", “OCR A Extended", “Bodoni MT Poster Compressed",

“Tempus Sans ITC", “Eras Demi ITC", “Jokerman", “Niagara En-

graved", “Magneto", “French Script MT", “Tw Cen MT", “Berlin

Sans FB Demi", “Tw Cen MT Condensed Extra Bold", “Castellar",

“Script MT Bold", “Freestyle Script", “Blackadder ITC", “Gloucester

MT Extra Condensed", “Bernard MT Condensed", “Curlz MT", “Fe-

lix Titling", “Baskerville Old Face", “Vladimir Script", “Rockwell",

“Onyx", “Kristen ITC", “Bodoni MT", “Cooper Black", “Eras Medium

ITC", “Californian FB", “Goudy Old Style", “Gill Sans Ultra Bold

Condensed", “Papyrus", “Chiller", “Showcard Gothic", “Juice ITC",

“Berlin Sans FB", “MT Extra".

A.2 Leak of One Windows 7 Update Released

on April 22, 2014

The Windows 7 update will change canvas rendering hash value

from Value One: 14578bcaee87#6fe7fee38ddfa2306a7e3b0a0a to

Value Two: bd554a7d5da9293cf3fed52d2052b2b948a14b77.

A.3 Leak of LibreO!ce6 Installation

In this subsection, we present the list of fonts added by the installa-

tion of LibreO!ce6 below.

“Miriam Mono CLM", “Noto Sans Lisu", “Scheherazade", “Linux

LibertineDisplayG", “EmojiOneColor", “NotoNaskhArabic", “Linux

Biolinum G", “Source Code Pro Black", “Noto Sans Light", “Frank

Ruehl CLM", “Caladea", “Noto Serif", “OpenSymbol", “Rubik", “Noto

Sans Georgian", “Noto Sans Lao", “Liberation Sans", “Source Code

Pro Light", “Noto Serif Lao", “DejaVu Serif Condensed", “KacstBook",

“DejaVu Sans Light", “Reem Ku" Regular", “Source Code Pro Semi-

bold", “Noto Naskh Arabic UI", “Source Sans Pro Black", “Gentium

Basic", “DejaVu Math TeX Gyre", “Source Code Pro ExtraLight",

“Noto Ku" Arabic", “Noto Sans Hebrew", “Amiri", “Source Sans Pro

Semibold", “Miriam CLM", “Source Code Pro", “Source Sans Pro",

“Noto Sans Cond", “Liberation Serif", “KacstO!ce", “Source Code

Pro Medium", “DejaVu Sans", “Liberation Mono", “Noto Serif Ar-

menian", “Alef", “Gentium Book Basic", “David Libre", “Noto Sans

Armenian", “Noto Serif Cond", “Linux Libertine G", “Liberation Sans

Narrow", “DejaVu Sans Condensed", “Source Sans Pro ExtraLight",

“DejaVu Sans Mono", “Noto Sans Arabic UI", “Noto Serif Georgian",

“Noto Mono", “David CLM", “Carlito", “Amiri Quran", “DejaVu Serif",

“Noto Serif Hebrew", “Noto Serif Light", “Source Sans Pro Light",

“Noto Sans", “Noto Sans Arabic".

A.4 Fonts Added by Firefox 57

In this subsection, we list all the fonts added by Firefox 57 below.

“Arial Black", “Arial Narrow", “Arial Rounded MT Bold", “Segoe

UI Light", “Segoe UI Semibold", “Berlin Sans FB Demi", “Bernard MT

Condensed", “Bodoni MT Black", “Bodoni MT Condensed", “Bodoni

MT Poster Compressed", “Britannic Bold", “Cooper Black", “Cop-

perplate Gothic Bold", “Copperplate Gothic Light", “Footlight MT

IMC ’20, October 27–November 29, 2020, Virtual Event, USA Song Li and Yinzhi Cao

Light", “Gill Sans MT Condensed", “Gill Sans MT Ext Condensed

Bold", “Gill Sans Ultra Bold", “Gill Sans Ultra Bold Condensed",

“Harlow Solid Italic", “OCR A Extended", “Rage Italic", “Rockwell

Condensed", “Rockwell Extra Bold", “Script MT Bold", “Tw Cen MT

Condensed", “Tw Cen MT Condensed Extra Bold".

