
Efficient Repair of Polluted Machine Learning Systems via
Causal Unlearning

Yinzhi Cao
Lehigh University, Bethlehem PA

yinzhi.cao@lehigh.edu

Alexander Fangxiao Yu
Columbia University, New York, NY

afy2103@columbia.edu

Andrew Aday
Columbia University, New York, NY

aza2112@columbia.edu

Eric Stahl
Lehigh University, Bethlehem PA

ems316@lehigh.edu

Jon Merwine
Lehigh University, Bethlehem PA

jmm214@lehigh.edu

Junfeng Yang
Columbia University, New York, NY

junfeng@cs.columbia.edu

ABSTRACT
Machine learning systems, though being successful in many real-
world applications, are known to remain prone to errors and attacks.
A major attack, called data pollution, injects maliciously crafted
training data samples into the training set, causing the system to
learn an incorrect model and subsequently misclassify testing sam-
ples. A natural solution to a data pollution attack is to remove the
polluted data from the training set and relearn a clean model. Unfor-
tunately, the training set of a real-world machine learning system can
contain millions of samples; it is thus hopeless for an administrator
to manually inspect all of them to weed out the polluted ones.

This paper presents an approach called causal unlearning and a
corresponding system called KARMA to efficiently repair a polluted
learning system. KARMA dramatically reduces the manual effort of
administrators by automatically detecting the set of polluted training
data samples with high precision and recall. Evaluation on three
learning systems show that KARMA greatly reduces manual effort
for repair, and has high precision and recall.

CCS CONCEPTS
• Computing methodologies → Machine learning; • Security and
privacy → Systems security;

KEYWORDS
Causality; Data Pollution Attacks; Machine Unlearning

ACM Reference format:
Yinzhi Cao, Alexander Fangxiao Yu, Andrew Aday, Eric Stahl, Jon Merwine,
and Junfeng Yang. 2018. Efficient Repair of Polluted Machine Learning Sys-
tems via Causal Unlearning. In Proceedings of 2018 ACM Asia Conference
on Computer and Communications Security, Incheon, Republic of Korea,
June 4–8, 2018 (ASIA CCS ’18), 13 pages.
https://doi.org/10.1145/3196494.3196517

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Association
for Computing Machinery.
ACM ISBN 978-1-4503-5576-6/18/06. . . $15.00
https://doi.org/10.1145/3196494.3196517

1 INTRODUCTION
Machine learning systems play an increasingly important role in
today’s world, from recommending products, contents, and friends
to self-driving cars. However, they remain vulnerable to a variety of
attacks, and mechanisms to defend against or cope with the attacks
remain understudied.

A major attack, called data pollution [35], injects maliciously
crafted training data samples into the training set, causing the system
to learn an incorrect model and subsequently misclassify testing
samples. The most recent real-world example is Microsoft’s AI
powered chatbot Tay. Tay learned racism because some Twitter users
interacted with Tay using offensive, racist words, and these words
were included in Tay’s training set [36]. In another proof-of-concept
example, Wang et al. [45] show that injected false samples in the
training set can mislead the machine learning classifier detecting
malicious crowdsourcing workers. Similarly, Perdisci et al. [35]
show that well-crafted fake network flows as part of the training
data can significantly influence the worm signatures generated by
PolyGraph [34], a worm detection engine.

A natural solution to a data pollution attack is to remove the
polluted data from the training set and relearn a clean model. Unfor-
tunately, the training set of a real-world machine learning system can
contain millions of samples; it is thus hopeless for an administrator
to manually inspect all of them to weed out the polluted ones. This
overwhelming amount of manual cleaning required is perhaps why
Microsoft brought Tay offline for repair but has yet to bring it back
online.

This paper presents KARMA,1 the first system designed for effi-
cient repair of a polluted machine learning system. It dramatically
reduces the manual effort administrators need to do by automatically
detecting the set of polluted training data samples with high preci-
sion and recall. Key in KARMA is an idea we call casual unlearning.
Specifically, to launch a data pollution attack, an attacker inevitably
leaves a trace—a causality chain that goes from the polluted train-
ing samples, to a polluted learning model, to misclassified testing
samples. Leveraging this causality trace, KARMA searches through
different subsets of training samples and returns the subset that
causes the most misclassifications as the set of polluted training sam-
ples. KARMA then determines how many misclassified samples are
caused by a subset of training samples by removing the subset from
the training set, computing a new model, and checking whether the
new model correctly classifies the previously misclassified samples.

1Karma, originated from Hinduism and Buddhism, means destiny or fate.

https://doi.org/10.1145/3196494.3196517
https://doi.org/10.1145/3196494.3196517

ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea Y. Cao et al.

KARMA thus reduces the manual effort required down to two parts.
First, it assumes that some users report misclassified testing samples
(e.g., as in the Microsoft Tay example or spam detection) and, for
added security, it relies on administrators to verify the user reports.
KARMA does not require all misclassified samples to be collected
upfront before it repairs a system; instead, our evaluation shows
that it can incrementally clean a system as users gradually report
misclassifications. Second, it relies on administrators to inspect
the set of polluted samples it returns. KARMA determines the set
of polluted samples leveraging causality of misclassifications, not
contents of the samples. Therefore, it may have false positives, such
as flagging (unpolluted) outliers in the training set. However, we view
it an advantage to use KARMA to detect outliers from the training set.
It may also have false negatives, such as missing polluted training
samples. However, if the remaining polluted samples do not cause
user-noticeable misclassifications, their harm may be little.

To ease discussion, we term the set of user-reported misclassified
test samples the oracle set. Administrators can augment this ora-
cle set with correctly classified test samples for better results. We
assume that all samples in the oracle set are assigned their correct
classifications. They may come from aforementioned administrator
verification, or automated approaches such as malware detection
via sophisticated dynamic analysis. In either case, we can afford to
verify the oracle set but not the entire training set because the oracle
set is often orders of magnitude smaller than the training set.

Although the causal unlearning idea is intuitive, KARMA faces
two challenges. First, the search space for causality in the training
set is very large, but at the same time KARMA needs to inspect the
entire space to avoid evasion. Second, a large training set can also
make it costly to compute a new model after removing a subset. To
speed up the search for causality, KARMA adopts a heuristics that
balances search coverage and speed based on that similar causes
will lead to similar effects with a high probability. Specifically, if
two training samples, serving as causes in KARMA, are very similar
and share the same label, their influences on the learning system
are also similar, i.e, there is a higher chance that they are both
polluted or unpolluted. To speed up model computation, KARMA

leverages machine unlearning [14], but also works with incremental
or decremental machine learning [15, 20, 37, 42, 43].

We evaluated KARMA on three systems covering two popular
learning algorithms (Bayes and SVM) and two application domains
(spam and malware detection). Our results show:

• KARMA reduces manual efforts. Specifically, in an attack scenario
from Nelson et al. [33], i.e., 1% of samples are polluted, KARMA

reduces the manual effort from the entire training set to 3% of
the training set, i.e., 2% as an oracle set and 1% as the identified
polluted samples, an over 30× reduction.

• KARMA is robust to a variety of attacks with different parameters.
Specifically, KARMA repairs learning models affected by a wide
variety of 95 data pollution attacks ranging from mislabelling to
injection attacks, with different tactics such as targeted and blind,
and having different pollution rates from 0.5% to 30%.

• KARMA is accurate. Specifically, KARMA identifies 99.2% pol-
luted samples in median with the minimum as 98.0% and the
maximum 99.97%.

• KARMA is effective. Specifically, KARMA restores the accuracy
of polluted learning models against a third dataset to the vanilla
one within 1% differences.

This paper makes three main contributions. At a conceptual level,
causal unlearning is the first approach to efficient repair of learn-
ing systems, and may inspire many possible systems toward this
direction. At a system level, we have built KARMA, a causal un-
learning system that uses several mechanisms to efficiently deter-
mine the set of polluted data samples with high precision and recall.
KARMA is open source and available at the following repository
(https://github.com/CausalUnlearning/KARMA). At an evaluation
level, we show that our approach works with real-world machine
learning systems and greatly reduces manual effort required to repair
a polluted system.

Our work is only the first step toward practical repair of learning
systems; more challenges lie ahead. How can we perform causal
unlearning on other machine learning algorithms and systems? How
can we repair a system that experienced other types of attacks target-
ing machine learning? While removing training samples is one way
to repair or improve a learning system, adding samples is another
which KARMA does not support. We hope other researchers will join
us in addressing these challenges.

2 THREAT MODEL
The threat model of KARMA assumes one learning system and three
parties—i.e., an administrator of the system, users of the system,
and an attacker. The administrator is absolutely trustworthy, being
responsible for training and maintaining the learning system; the
attacker is malicious and tries to subvert the system by polluting
the training dataset; most users are trustworthy, but some of them
may have malicious intent. Note that we do not restrict the capability
of the attacker, i.e., theoretically the attacker can pollute arbitrary
number of training data. In practice, as long as the pollution is
effective, the attacker also wants to minimize the number of polluted
training data and reduce her chance of being caught. Depending on
how the administrator collects the training dataset, we list two attack
scenarios where an attacker can pollute training set.
Scenario One—Mislabelling Attack: In this scenario, an adminis-
trator of a learning system adopts crowdsourcing, such as asking
Amazon Mechanical Turks, to label training samples. Some of the
crowdsourcing workers have malicious intents, i.e., they will misla-
bel2 samples provided by the administrator, to pollute the learning
model. In this scenario, the capability of attackers is limited in pol-
luting the labels but not contents of training samples, because all the
samples are provided by the administrator.
Scenario Two—Injection Attack: In this scenario, an administrator
of a learning system tries to collect malicious samples, such as
spam and malware, through a honeypot-based technique. An attacker
figures out the purpose of the honeypot and then intentionally sends
crafted, polluted samples to the honeypot so that such samples will
be include in the training set. Note that attackers, different from
the first scenario, are able to craft and inject contents. However, the

2In this paper, misclassified samples (emails) refer to these that are incorrectly classified
by the learning model; mislabeled samples (emails) refer to these in the training set that
are incorrectly labeled by the attacker.

https://github.com/CausalUnlearning/KARMA

Causal Unlearning ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea

(6) Unlearn

(4) Causality Analysis

Training

Data

Spam

Detector

Labeled

Emails

Pollute Existing

Filters
(1) Train

Attacker Admin Users

(3) Verify

(5) Verify
Polluted

Data

Emails (2) Report

Misclassification

Repaired

Model

Data Procedure Our procedure

Training

Stage

Use Stage

Repair Stage

Stage

Update

Figure 1: Deployment Model (spam detectors as an example).

attacker can only control one class of samples, i.e., malicious ones,
because a honeypot usually collects just malicious samples.

3 DEPLOYMENT MODEL
When we deploy KARMA with a learning system, there are tree
stages in the lifecycle of deployment: training, use and repair. In the
training stage, the administrator will train a learning model based
on potentially polluted training data. Then, in the use stage, the
administrator will obtain feedbacks of the learning system from
third parties, such as users of the model and other independent
testing parties including VirusTotal for malware detection. After that,
based on the feedbacks especially misclassification reports, in the
repair stage, the administrator will repair the model with the help of
an oracle, such as a human performing code reviews and a dynamic
analyzer exploring and examining program behaviors.
An Example Deployment with Spam Detectors. Figure 1 shows
the deployment model of KARMA by using an example of spam
detectors where the oracle is a trusted human. Say, a spam detector
is trained by an administrator with a potential polluted training set
(step one) and deployed together with an email client. When training
the system, the administrator might have already deployed exist-
ing approaches, which are orthogonal to KARMA, to filter potential
polluted emails [17, 34, 39] and make the model robust. However,
some polluted emails may have bypassed the filter and still make
the learning model misclassify samples as evident by existing at-
tacks [35, 45].

Then, the users of this email client complain about misclassifica-
tions and report misclassified emails to the administrator (step two).
The administrator or other trusted person, i.e., an oracle, verifies
these reported misclassifications, and uses them as an input dataset
for KARMA called the oracle set (step three). To improve accuracy,
the oracle set can include a small number of correctly classified
emails as well.

Next, the administrator deploys KARMA to find the cause of
misclassifications in the oracle set (step four). The cause, a subset
of the training set, will be verified by the administrator to confirm

which samples are polluted and whether the misclassification is
caused by data pollution (step five). After that, the administrator can
ask our system to repair the learning model by removing verified
polluted samples (step six).

Note that KARMA greatly relieves the burden of the oracle. With-
out KARMA, an administrator needs to first verify misclassifications
reported by users and confirms that the model misbehaves. Then, the
oracle needs to confirm misclassifications, go over all training sam-
ples and find pollutions. Now, with KARMA, the oracle still verifies
misclassifications reported by users, but then only needs to verify
the dataset reported by the users and misclassification cause, both
smaller than the entire training dataset. As shown in the evaluation
(Section 6), the size of oracle set is less than 2% of training data.
The size of misclassification cause highly depends on the attacker’s
strategies, which varies from 0.5% to 30% of training data in our
experiment. According to Nelson et al. [33], only 1% of samples
are needed to subvert an email filter. It is our future work to further
decrease the size of samples to be inspected by the administrator.

4 DESIGN
We present the design of KARMA in this section.

4.1 Overview
Let us first discuss the inputs and outputs of KARMA. Specifically,
KARMA takes three inputs: one machine learning model (M), usually
a replicate of the deployed learning model for analysis purpose,
and two datasets. The first set Straininд—the one used to generate
M—is large and potentially polluted by an attacker; the second set
Soracle is a small dataset mostly coming from misclassification
reported by users of M (Step 2 of the deployment model in Figure 1).
Soracle is verified by an oracle, such as the administrator of M .
The output of KARMA is another dataset Scause that leads to the
misclassifications of Soracle when classified by M . In KARMA, the
degree of misclassifications can be represented as the detection
accuracy of M against Soracle defined in Equation 1.

AccuracySoracle = 1 −
| {x is misclassif ied by M |x ∈ Soracle } |

|Soracle |
(1)

Now let us discuss how the administrator validates Soracle , which
comes from what the users report. Specifically, the administrator’s
job can be summarized as follows. Note that the amount work for
the administrator is minimized because everything is performed on
a small number of Soracle not the entire Straininд .

• Adding user-reported misclassified samples to Soracle iteratively.
Once the administrator collects some misclassified samples as
Soracle , she can run KARMA using to partially repair M by find-
ing the misclassification cause and removing a subset of polluted
training samples. Because M is still polluted and produces incor-
rect results, i.e., misclassifying samples, users of M will report
further misclassifications to the administrator. Then, the admin-
istrator can construct a new Soracle , and ask KARMA to further
repair M . We have a detailed evaluation about this scenario in
Section 6.5.

• Removing falsely reported samples from users with malicious
intent. Once the administrator finds that some reported samples
are correctly classified, she can remove such samples as shown

ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea Y. Cao et al.

in Step 2 of the deployment model in Figure 1. None of the false
report will be fed into and thus influence KARMA. Further, the
administrator may even block such users from reporting more
samples.

• Understanding the output of KARMA and adding more samples to
the training set, if necessary, to improve M . KARMA will find the
cause of misclassification, which could be some correctly labeled
samples failing to represent the misclassified samples. That is, the
training data may be insufficient, e.g., lacking a specific category
of samples, so that M misclassifies the entire category. In this
case, the administrator can rely on the cause found by KARMA

to introduce new samples that can differentiate the cause and the
misclassified samples. This is considered beyond the scope of the
paper though, because no attackers or data pollutions exist.

4.2 Causality Analysis
We present how causality analysis works in this section. From a high
level, what KARMA does is to try removing different samples from
the training set and observe whether samples are still misclassified.
That is, based on the effect (i.e., misclassified samples), KARMA tries
to inspect the cause (e.g., polluted samples) by searching through
the cause space (i.e., training set). If the effect (misclassification) is
mitigated when removing a subset of training data, we can consider
this subset as the cause, which is the polluted samples when the
model is polluted.

In the rest of the subsection, we first present the causality analy-
sis from three perspectives: causality search, causality growth and
causality determination.

4.2.1 Causality Search. The first step of causality analysis is
to search for the potential causality that leads to the misclassification
of a learning system against Soracle . Although ultimately KARMA

needs to search every training sample and try different combinations,
in order to speed up the search, KARMA will conduct a guided pro-
cess that prioritize exploration of training samples that have higher
probability of being polluted. Note that it is the job of causality
determination not the search stage to determine whether samples are
polluted.

Here is how the search with a two-phase procedure works. In
the first phase, KARMA clusters the misclassified data into different
parts, and the centers of the clusters are extracted. Then, in the
second phase, KARMA prioritizes the search of similar data samples
in the training set based on the extracted centers of misclassified
data clusters. These training samples can be used for the causality
growth stage of KARMA as seeds.

Similarity in KARMA is measured by a definition called diver-
gence score in Equation 2, i.e., one divided by the number of com-
mon features between two samples. That is, if two samples share
many common features, they are close to each other and their diver-
gence score is low.

d (x, y) =
1

| {F |F is x ′s f eature } ∩ {F |F is y′s f eature } |
(2)

Now, let us introduce these two phases in details. In the first phase,
misclassified data are first divided into groups based on their labels.
In the most common case where only two labels are available, such
as malicious and benign, all the misclassified benign samples are in
group one, and all the misclassified malicious ones group two. In the

rest of the subsection, for convenience, misclassified data is referred
to only one group of misclassified data. After grouping, we start
clustering in each group individually, and the clustering algorithm is
very similar to k-means but using our divergence scores.

Here is how the first phase, clustering misclassified data, works.
KARMA randomly selects k samples from misclassified data, c1, c2,
..., ck , which are the centers of the initial clusters. Then, KARMA

iterates through all other samples in the misclassified data, and
calculates the divergence scores between all other samples and each
center. A sample will be included into the cluster where the center
has the smallest divergence score with the sample. Next, the center
of each cluster, c1, c2, ..., ck , will be updated based on the common
feature list of that cluster. The entire process is then repeated using
the updated centers until convergence. The final c1, c2, ..., ck are
used in the second phase.

In the second phase, for each ci , KARMA iterates through the
training set, and finds the si that has the smallest divergence score
with ci . All s1, s2, ..., sk will be used as the seeds for the peak finder
and the unlearning module. That is, these samples have a higher
probability to be polluted than others in the training set. This phase
of finding all the seeds can be further divided into two sub-phases:
pre-computing and searching.

• Pre-computing Sub-phase. The pre-computing sub-phase con-
structs a so-called judging tree that can be used in and expedites
the searching. The judging tree has one root node with all the
features used in the training set. The root node has k children (e.g.,
k equals the square root of the size of the training set), where each
child represents a subset of the training set and the value of each
child is the union of all the features used in the subset. Each child
also has l descendants (e.g., l equals the square root of the size
of the subset), and the descendant will also have children. The
structure is repeated and extended until the leaf node only has one
sample.

The construction of a judging tree is as follows. KARMA

adopts a similar clustering mechanism, i.e., a variation of k-means,
used in the first phase to compute one level of the judging tree.
The difference is that instead of using the common feature list as
the center, the construction of a judging tree adopts the union of
all the features in the cluster as the center. KARMA still computes
the divergence scores between each sample and the centers, and
then dispatches the sample to the closest cluster. The overall pro-
cess is repeated until convergence, and the k clusters are served
as the k nodes of the judging tree. Then, the next levels are com-
puted using similar algorithm until the construction reaches the
leaf node.

• Searching Sub-phase. With the judging tree, in the searching sub-
phase, KARMA performs a depth-first, priority searching algo-
rithm, and maintains a minimum divergence score dmin between
ci and the searched samples so far. In the beginning, dmin equals
infinity. On each level, KARMA ranks the search priority based
on the divergence scores between the nodes and ci : Nodes with
smaller divergence scores are searched first, and nodes with di-
vergence scores larger than dmin are skipped directly. dmin is
only updated in the leaf node level, i.e., if the divergence score
between ci and a sample is smaller than dmin , dmin is updated to

Causal Unlearning ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea

that score. The sample corresponding to the final dmin is selected
as si .

4.2.2 Causality Growth. The second step of KARMA is to
grow the causality found in the first stage by finding more training
samples and forming a cluster. Similar to causality search, causality
growth does not determine whether samples are polluted either. Our
key observation for causality growth is that the common feature
list, i.e., a list of features whose values are identical in two samples
as defined in the divergence score (Equation 2), only shrinks as
the causality cluster grows. Correspondingly, the divergence score
between the causality cluster and each sample in the target dataset
increases when the size of the cluster increases.

Thus, because the divergence score increases as the causality
cluster grows, instead of calculating the divergence score in each
round, we can maintain a lower bound of the divergence score and
only update the score if necessary. The detailed steps are as follows
and shown in Algorithm 1. We maintain a sorted list (one can also
use a priority queue) of the lower bound of the divergence scores
between the cluster and each sample in the target dataset.

The initial list is consisted of all the divergence scores between
the cluster and samples in the target dataset and correctly ordered.
As shown in Line 1–4 of Algorithm 1, we fetch each sample from
the target dataset (TSet), calculate the divergence score between the
cluster (CSet) and each sample, and then put the result to the list
(DiverдenceScoreList). After iterating through all the samples in
CSet , the initial list is generated.

In each round, we fetch the element on the top of the list, i.e., the
one with the smallest value, and update the value to the latest diver-
gence score between the cluster and sample. Particularly, we pop out
the element from the top of DiverдenceScoreList (Line 8 and 9), up-
date the value (Line 10), and then put it back to DiverдenceScoreList
(Line 11). If the updated value still stays on top of the list, we will
include the sample corresponding to the value into the cluster; other-
wise, we will insert the value back to the list in its correct position to
maintain the order, fetch the new element on the top of the list, and re-
peat the process until we have an updated value that stays on the top.
That is, we test whether the updated top of DiverдenceScoreList is
calculated using the current cluster (CSet) in Line 7. If not, Line 8–11
will be repeated; if yes, we pop out the top of DiverдenceScoreList
(Line 13), and add the sample to CSet (Line 14–15).

The rationale behind the algorithm is as follows. In each round, we
want to select the one with the lowest divergence score. Because each
value in DiverдenceScoreList is a lower bound, the real divergence
score will be higher than the value in the list. If we can select a
real divergence score that is smaller than all the lower bound values,
the selected score will be automatically smaller than all other real
divergence scores. Such lazy updates will help us save time in the
calculation.

4.2.3 Causality Determination. In the third step, KARMA de-
termines whether a causality cluster is polluted as well as the size of
the cluster. Now, let us introduce the details about how the determi-
nation works. The detection accuracy of a machine learning model
can be defined as a function: accuracy = f (M, Soracle), which takes
M the machine learning model and Soracle the oracle set as inputs.
After unlearning a causality cluster of a certain size, the detection ac-
curacy can be represented as accuracy = f (M ′, Soracle) whereM ′ is

Algorithm 1 The Algorithm of Growing Causality Clusters.
Input:

Target Dataset: TSet
Target Causality Cluster: CSet (Initialized with a seed)
Causality Cluster Size: size (Intended cluster size)

Process:
1: Create an empty, automatically-sorted DiverдenceScoreList .
2: for i in TSet do
3: d = calculateDiverдenceScore(CSet, i);
4: DiverдenceScoreList .put (d);
5: end for
6: for iter in [0 : size − 1] do
7: while DiverдenceScoreList .дet ().дetCSet ()! = CSet) do
8: d = DiverдenceScoreList .pop();
9: i = d .дetSample();

10: new_d = calculateDiverдenceScore(CSet, i);
11: DiverдenceScoreList .put (new_d);
12: end while
13: d = DiverдenceScoreList .pop();
14: i = d .дetSample();
15: CSet .add (i);
16: end for

the new machine learning model and equals unlearn(M, seed, size).
Further, if we substitute M ′ in the accuracy equation, we obtain the
following: accuracy = f (unlearn(M, seed, size), Soracle). M is gen-
erated from Straininд , another constant. Therefore, we can simplify
the f to a single variable function accuracy = д(size).

Then, let us discuss the single variable function accuracy =
д(size). If starting from size as one, the detection accuracy increases
in the first place, KARMA will unlearn more polluted samples similar
to the first seed. As the cluster grows, the increasing speed of the
accuracy decreases until the accuracy reaches a peak. The reason
is that the polluted samples close to the cluster will become fewer,
when including more polluted samples into the cluster. Then, the
detection accuracy starts to decrease, because KARMA will include
unpolluted samples into the cluster. At contrast, if starting from size
as one, the detection accuracy decreases in the first place, KARMA

is likely to encounter unpolluted, normal samples that should remain
in the training set. To sum up, our goal is to first identify whether
the cluster contains polluted data by observing the detection accu-
racy changes, and then find the corresponding size to the peak of
the detection accuracy. Therefore, the task boils down to find the
peak value (the first local maximum close to the zero point) of a
single, discrete-value variable function (accuracy = д(size)) and its
corresponding variable (size) value.

Note that the first local maximum is sufficient, because KARMA

will sift through every training sample that is not included in a
cluster. That is, all the training samples will be inspected by KARMA.
At contrast, if KARMA tries the second or the global maximum,
many unpolluted, normal samples may be mistakenly considered as
polluted, thus influencing the overall accuracy.

Next, let us solve the problem of finding the peak of the single-
variable function. In particular, KARMA needs to find the first local
maxima starting from a cluster with the size as zero. The prob-
lem is not as straightforward as finding a local peak of a normal
single-variable function, because the computation of one value in
our function is very expensive. That is, KARMA needs to feed all the
samples of the oracle set into the machine learning engine, obtain
the results, and then calculate the accuracy. The detection of one
sample with a machine learning engine is already expensive, and our
computation time needs to multiply the size of oracle set, making the

ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea Y. Cao et al.

Algorithm 2 The Algorithm of Causality Determination.
Input:

Initial Step Value: M
The Set Size: Size
The Initial Seed: seed
The Detection Accuracy Function after Unlearning a Cluster of Size x given a seed : д(x) =
f (unlearn(M, seed, size), Soracle)

Process:
1: star t = 0
2: end = Size
3: i = M
4: if д(i) < д(0) then
5: Exit {Note: the cluster is considered unpolluted in this iteration.}
6: end if
7: while star t < end & i < end do
8: if д(i) < д(i −M) then
9: star t =max (i − 2M, star t)

10: end = i
11: M = round (sqr t (M))

12: i = star t
13: end if
14: i = i +M
15: end while
16: return a cluster with size i .

computation even more expensive. Therefore, we cannot afford cal-
culating the detection accuracy for each point of the single-variable
function.

Faced with this, we adopt two techniques to make the search faster.
First, KARMA starts from a coarse-grained search, narrows down the
interval with the peak, and then performs a more fine-grained search
within the interval. The target interval becomes smaller each time,
and KARMA does not need to waste our time upon these intervals
that do not contain the peak.

The detailed process is below. and shown in Algorithm 2. At
Line 1–3, all the variables are initialized. At Line 4–6, KARMA first
judges whether the causality cluster is polluted by observing the
detection accuracy changes: If the accuracy increases, the cluster
is polluted and KARMA continues; otherwise, KARMA stops here.
Then, KARMA At Line 7–15, KARMA starts from a cluster with zero
size, and each time the size of the cluster is incremented by M . If
the accuracy starts to decrease (Line 8), KARMA will combine the
current interval and the one before together, and start a new search
with a smaller incremental step as

√
M within the new interval.

The search will stop once the target interval shrinks to only one
point. Because д(Size) = 0 < д(0), KARMA could expect that the
accuracy has to decrease in between 0 and Size. However, to make
the algorithm deterministically stop, we also put another condition
to stop the algorithm once there is no target interval found. Note that
the д function in Algorithm 2 remembers the value inquired before,
and does not probe the learning model for accuracy with cached
values.

Second, KARMA can reuse the detection results of the oracle set
in the computed д(size) function to make the calculation of other
д(x) (where x is an unknown size) faster. For example, if KARMA

has calculated д(x − 1), now KARMA needs to calculate д(x), and
the difference between a cluster of size x and x − 1 is a sample with
features F1 and F2. Therefore, the detection results of samples in
the oracle set without F1 and F2 does not change between д(x) and
д(x − 1). That is, KARMA can reuse the detection results of these
samples produced for д(x − 1) in the calculation of accuracy for д(x).

In practice, KARMA may not find a д(x − 1) that is so close to
д(x). KARMA needs to find another д(y) to minimize |y − x |, and
then obtain the features in all the different samples between д(x) and

Algorithm 3 The Algorithm of the Unlearning Module.
Input:

Training Set: Straininд
Oracle Set: Soracle
Learning Model: M

Process:
1: Smisclassi f ied = f indMisclassif ied(M, Soracle)
2: Sseeds = causalitySearch(Smisclassi f ied , Straininд)
3: Stmp = Straininд
4: Scluster s = NU LL
5: while Stmp ! = NU LL do
6: seed = Sseeds .pop()
7: if seed = NU LL then
8: seed = Stmp .дet ()
9: end if

10: cluster = causalityDetermination(seed, Straininд, M)

11: if cluster is polluted then
12: Scluster s .push(cluster)
13: end if
14: Stmp .r emove(cluster)
15: end while
16: while i in Scluster s do
17: accuracyDelta = accuracy(unlearn(M, i), Soracle) − or iдinalAccuracy
18: if accuracyDelta > 0 then
19: M = unlearn(M, i) {Note: i is selected to remove.}
20: end if
21: end while

д(y). Then, the samples in Soracle with these features will be tested
against M , and KARMA will calculate the accuracy based on part of
the detection results in д(y) and the rest in д(x).

4.3 Causality Removal (Unlearning)
In this part of the section, we present the unlearning module in

Algorithm 3. First, a list of seeds is generated by the causality search
module based on the learning model, misclassified data, and training
data (Line 1–2). Next, the algorithm sets the initial value of the
working set Stmp to be Straininд (Line 3). Starting from each seed
(Line 6), the causality determination module decides the cluster size
and forms a cluster (Line 10). The cluster, if polluted, is pushed to a
set Sclusters (Line 11–13) and removed from our working dataset
Stmp (Line 14). Then, the algorithm will repeat forming clusters
until the working set is empty (Line 5). During the repetition, if the
algorithm runs out of seeds, it randomly select a sample from the
the working set as the seed (Line 7–9).

Then, the algorithm goes through the generated list of clusters of
the training set (Line 16–20). Specifically, the algorithm calculates
the current accuracy delta (Line 17), ensures that each cluster does
cause the accuracy to increase (Line 18), and then unlearns the
cluster from M (Line 19). Next, the entire algorithm (Line 1–21)
is repeated based on a new M with polluted clusters unlearned and
a new Straininд with polluted clusters removed. That is, the seed
finder will find a new list of seeds fed into the peak finder, and then
the algorithm will have a new list of clusters, and find the cluster to
unlearn.

The iteration of Algorithm 3 is stopped based on two possible
conditions. First, if the detection accuracy meets the expected value
of the administrator of the learning model, the algorithm will stop.
That is, the produced new learning model will be enough for use in
the view of the administrator. Second, if the algorithm cannot find
any new clusters to unlearn (or precisely no clusters that cause the
detection accuracy to increase), the algorithm will also stop. That
is, in this case, ideally, all the polluted data samples are removed
from the training set, and unlearned from the learning model. In

Causal Unlearning ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea

practice, as shown in the evaluation, we may still have a small
number of samples, such as less than one or two percent of polluted
data, scattered in the training set, however such polluted samples
will have little impacts on the learning model as evident by the fact
that the detection accuracy goes back to the vanilla value. The reason
is that learning model itself is somehow robust to a small number of
erroneous data, especially when they are not in clusters.

5 IMPLEMENTATION
Our prototype implementation of KARMA framework contains 3,009
lines of Python code. In particular, the implementation of divergence
score contains 330 lines of code, the cluster forming 324 lines of
code, the core of KARMA 1,968 lines of code, and other parts (such
as the interface with learning model) 717 lines of code. The proto-
type implementation uses stand-alone files that provide APIs to be
interacted with other learning systems. The main interaction (unless
otherwise specified in Section 6.8 where we use an SVM-based
spam filter and another Bayes-based JavaScript malware detector) is
with SpamBayes [6], a naïve Bayes classifier capable of identifying
spam and ham (non-spam) emails. We choose SpamBayes, because
there is a published paper [33] documenting how to pollute Spam-
Bayes, and as shown in Section 6 we will follow the paper to launch
dictionary attacks. We believe that using the same learning system
for data pollution documented in the literature will greatly reduce
any potential bias.

6 EVALUATION
In the section of evaluation, we are going to evaluate our prototype
implementation of KARMA framework.

6.1 Attacks and Datasets
In this subsection, following the two attack scenarios described in
the threat model of Section 2, we present how we evaluate KARMA

against these two attacks. Our vanilla dataset is a publicly avail-
able spam dataset called Enron-Spam [2, 41] consisting of 517,401
emails. Nine tenths of the vanilla dataset, i.e., 465,661 emails, are
used for the vanilla training set, and the rest will be used for the
oracle and testing dataset.
Mislabelling Attacks. In this attack scenario, as detailed in Sec-
tion 2, the administrator relies on crowdsourcing workers to label
training dataset, and the attacker’s capability is limited to altering
the labels. We assume that the administrator randomly assign all the
training emails to 1,000 crowdsourcing workers, and each worker
will label about 466 emails. Among the workers, some have mali-
cious intents to mislabel emails. In the experiment, we assume that
the ratio of malicious workers ranges from 5% to 30%.We categorize
malicious workers below:

• Blind Mislabelling. A blind mislabelling worker will mislabel all
the emails assigned to her. We collect 6 polluted datasets with
different malicious worker ratios.

• Targeted Mislabelling. There are two subtypes of targeted mis-
labelling workers. First, the worker only intentionally mislabels
one class of emails, either spam as ham or ham as spam. We
collect 24 polluted datasets with different malicious worker ratios.
Second, the worker only mislabels emails with certain features
(words). In the experiment, we choose several popular words, such

as “laptop”, “schedule” and “magazine”, and collect 12 polluted
datasets.

Additionally, we also collect 3 datasets mixing blind and targeted
mislabelling: one blind and spam as ham, one blind and ham as
spam, another blind and mislabelling with certain features. In sum,
45 polluted datasets are collected from mislabelling attacks. The
pollution technique is effective as demonstrated in the final accuracy
of learning model ranging from 15.2% to 51%.
Injection (Dictionary) Attacks. In this attack scenario, as detailed
in Section 2, the attacker has more control over the spam emails
but no control over ham emails, because a honeypot collects spams
from spammers. Particularly, we launch a special injection attack,
i.e., the dictionary attack proposed by Nelson et al. [33] to generate
spams with many injected dictionary words, i.e., spams with crafted
features. The purposes of a dictionary attack are twofold. First, if
legitimate dictionary words are considered as spam features, many
ham emails with such words will be misclassified. Second, if non-
spam words are considered as spam features, the real spam features
might be buried and not selected by the learning model.

Based on the aforementioned dictionary attacks, we collect 50
polluted datasets. The polluted emails are about 0.5% to 4% of the
entire training set, and the final detection accuracy after pollution
ranges from 59.3% to 81.4%. Specifically, in each attack, an attacker
can craft spams based on four parameters: number of clusters (NC),
cluster size (CS) that is the number of emails in a cluster, number
of words (NW) that is the length of each email, and maximum
deviation of word set between two emails in one cluster (D). In
our experiment, NC is selected randomly between 1 and 26 for
each dataset, CS randomly between 1 and 1000 for each cluster,
NW randomly between 1000 and 2000 for each cluster, and D%
randomly between 10% and 50% for each dataset.
Oracle and Testing Datasets. The samples used for oracle and
testing datasets are further divided into two parts. The first part with
25,870 emails is used as an independent, third dataset (Stest) for
validation purpose such as measuring the accuracy of the learning
model. All the accuracies reported in this section are using this
dataset.

The second part is used to generate Soracle , the oracle set. We
feed emails in this part (about 1/20 of the entire dataset) into each
polluted learning model, and include the misclassified emails and
one tenth of the correctly classified emails into Soracle . Based on dif-
ferent attacks, Soracle varies, but roughly contains 5K–15K emails.

6.2 Comparing with Learning-based Approaches
In this part of the section, we evaluate two naïve learning-based ap-
proaches and show that they cannot repair a polluted learning model
in our experiment. Specifically, the first approach is to construct a
learning model with only Soracle , and the second is to improve the
already polluted model trained from a polluted Straininд by learning
Soracle incrementally.

First, let us see whether Soracle can be used to train a learning
model with good accuracy. Because Soracle varies for different
attacks, we randomly select five Soracle , train a learning model,
and test the learning model against Stest . The accuracies are all
below 60%. The reason is that Soracle is a good representation of
misclassified emails, but not correctly classified emails. In sum, the

ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea Y. Cao et al.

take-away for this experiment is that although Soracle can be used
to find the polluted data and fix the learning model, Soracle cannot
be used as a stand-alone dataset for training purposes.

Second, we incrementally learn Soracle based on the polluted
learning model, i.e., the new training set of the model will be the
polluted dataset plus Soracle . We then evaluate whether the polluted
learning model can be repaired. We call this naïve approach correc-
tive learning in this paper. Similar to the previous experiment, we
choose five random Soracle for the experiment. The results show
that the accuracies are all below 70%.

The reason is as follows. Due to the small size of Soracle , the
correctly labelled samples in Soracle cannot negate the pollution
effects. Because there is no prior work on this corrective learning
approach and we do not have enough number of additional correctly
labeled samples, we are not sure how to determine the number of
correctly labelled samples to learn. One thing worth noting is that
the number is very challenging to determine: Fewer samples do not
negate the pollution effects, but more will cause overfitting. Further
investigation is out of scope of the paper.

Now from a high level, let us compare corrective learning and
KARMA. We believe that in this specific problem, KARMA is su-
perior to corrective learning due to the following two reasons. (i)
KARMA not only repairs the polluted model, but also helps to block
future pollution attempts, because the administrator can find the
pollution source based on the misclassification cause. As a com-
parison, corrective learning only repairs the model, but not blocks
future attempts. (ii) When the size of Soracle increases, KARMA

only becomes more effective in repairing the polluted model, but
corrective learning may correct the polluted learning model to the
other extreme, i.e., causing overfitting.

6.3 True Positives and Negatives
In this part of the section, we evaluate the true positives and negatives
of KARMA using all the attack datasets mentioned in Section 6.1.
True positives are defined as the percentage of polluted identified,
and true negative the percentage of unpolluted remained.

The true positives of KARMA against all the datasets are higher
than 98.0% for the lowest, 99.2% for the median, and reaching
99.97% for the highest. The very high true positives prove the ef-
fectiveness of KARMA in identifying polluted samples altered or
injected by adversaries. The rest of less than 1–2% polluted data
is scattered in the training data, and has little impacts on the learn-
ing model as evident by our final detection accuracy, which is very
close to the vanilla (±0.9%) after removing the polluted shown in
Section 6.4.

The true negatives are higher than 85.5% for the lowest, 90.8% for
the median, and reaching 94.3% for the highest. Such true negatives
are partially due to the fact that the original dataset contain some
noisy data. Such noisy data can be classified into two categories.
First, if one unlearns some unpolluted, noisy data directly from the
training set, the detection accuracy also increases. Second, some
noisy data might not have impacts on the detection accuracy of the
learning model due to its small size. However, when these noisy
data is combined with a large, polluted data cluster, the combination
may have impacts of the detection accuracy. As evident by our
final detection accuracy, to add or remove such noisy data has very

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35

D
e

te
c
ti
o

n
 A

c
c
u

ra
c
y
 (

%
)

Number of Clusters Unlearned

Blind Mislabelling
Targeted Mislabelling (spam->ham)
Targeted Mislabelling (ham->spam)

Figure 2: The Detection Accuracy of Learning Models Polluted
by Mislabelling Attacks when Applying KARMA (The horizon-
tal line at the end of each curve indicates the vanilla accuracy
for that dataset).

little impacts on the learning model. In the future, as discussed in
Section 7, such noisy data, just like active learning, may guide the
learning algorithm to query the administrator or other oracles to
label new similar data samples to further improve the model.

6.4 Effectiveness in Accuracy Repair
In this section, we show the effectiveness of KARMA in the metrics
of detection accuracy.
Mislabelling Attacks. We first evaluate KARMA against misla-
belling attacks. Figure 2 shows the detection accuracy when clusters
are unlearned from learning models polluted by three mislabelling
attacks. The x-axis is the number of clusters unlearned, and the y-
axis is the detection accuracy. Due to the space limit in the figure,
we select three representative attacks: one with blind mislabelling at-
tacker, and two with targeted mislabelling attacker (ham as spam and
spam as ham respectively). The ratio of malicious workers is 15%
for all three attacks. Note that the results for the rest mislabelling
attacks are similar to the ones shown in the figure: The number of
clusters unlearned may vary a little, but the trend and final accuracy
differences are very close.

In Figure 2, we use a horizontal line at the end of each curve to
indicate the vanilla accuracy for that dataset. These vanilla accuracy
values are 92.02% (blind mislabelling), 93.03% (ham as spam), and
92.93% (spam as ham) from the left to the right for the horizontal
lines in the figure. The final accuracies after KARMA are very close
to the vanilla ones, within ±0.9%. Note that some of the final accura-
cies are higher than the vanilla, because the vanilla dataset without
pollution also contains some errors. If we perform KARMA upon the
vanilla dataset, the accuracy can also increase by 0.1%–0.2%.
Dictionary Attacks. In this subsection, we evaluate KARMA against
the dictionary attacks. Figure 3 shows the detection accuracy over
the iteration when clusters are unlearned. The x-axis is the number
of clusters unlearned, and the y-axis is the detection accuracy. The
vanilla detection accuracy is 94.825% in our experiment. Similar
to mislabelling attacks, the final accuracies after KARMA are close
to the vanilla one, within ±0.3%. We only include the results of
five datasets out of fifty because of the space limit of the graph.
The parameters for the five dictionary attacks are as follows: NC is

Causal Unlearning ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea

 65

 70

 75

 80

 85

 90

 95

 100

 0 2 4 6 8 10 12

Vanilla Accuracy: 94.825%

D
e

te
c
ti
o

n
 A

c
c
u

ra
c
y
 (

%
)

Number of Clusters Unlearned

NC: 4
NC: 5

NC: 10
NC: 14
NC: 15

Figure 3: The Detection Accuracy of Learning Models Polluted
by Dictionary Attacks when Applying KARMA (NC means the
number of clusters injected in dictionary attacks, maximum de-
viation D% equals 30% for all five datasets, and both cluster
size (CS) and number of words (NW) vary for different clusters
in each dataset).

marked in the figure, D% is 30% for all five, and both CS and NW
are selected randomly for each cluster in the datasets. The results for
the rest attacks are very similar to the ones depicted in Figure 3, and
our observation below also applies to the rest.

First, the number of clusters (NC) in each dictionary attack
roughly matches with but does not equal to the number of clus-
ters unlearned. In some cases when two separate injected clusters
are close enough, KARMA may consider them as one; at contrast,
due to the existence of parameter D, one cluster may be considered
as two separate clusters in KARMA.

Second, one major difference of KARMA between mislabelling
and dictionary attacks is the number of cluster unlearned (the x-axis
in Figure 2 and 3). The number of clusters unlearned for mislabelling
attacks is larger than the one for dictionary on average. The reason
is that dictionary attacks are launched with clusters (and some varia-
tions within each cluster) as opposed to mislabelling attacks, which
flip over the labels of emails randomly assigned by an administrator.
That is, the KARMA algorithm needs to find and form clusters when
finding polluted samples for mislabelling attacks.

6.5 Effects of Oracle Sets
In this section, we are going to evaluate how oracle sets affect
KARMA. We evaluate KARMA using two types of oracle sets: one
with less misclassified emails and one with only misclassified emails.

First, we randomly pick a mislabelling attack, and then reduce the
number of misclassified emails in the oracle set to 1/2 (Soracle,1/2),
1/3 (Soracle,1/3) and 1/10 (Soracle,1/10). Both true positive and neg-
ative are measured to evaluate the effect of these oracle sets. The
original true positive is 98.2%, and true negative 90%. The true
positive drops to 98% for Soracle,1/2, 96.9% for Soracle,1/3, and
then 83.2% for Soracle,1/10. The true negative stays the same when
the number of misclassified reduces.

This experiment tells us that KARMA requires that the oracle set
contains some amount of misclassified samples to make KARMA

effective. Now let us answer how to determine the size of Soracle .
The administrator can first use a small number of misclassifications

as the oracle set and repair the learning model. If users still report
misclassifications for the repaired learning model and the misclas-
sifications are verified, the administrator can form a new oracle set
and further repair the model. The feedback loop can be repeated for
many times.

To prove this, we first apply KARMA with Soracle,1/10, and repair
the learning model. Then, we obtain another Soracle,1/10 based on
the current misclassifications, and repair the learning model again.
When we repeat the process for three times, the true positive arises
to 98.2%, the same as the original with Soracle .

Second, we adopt a new oracle set that only contains all the mis-
classified emails but no correctly classified emails. All the dictionary
and mislabeled attacks are used to test the effectiveness of KARMA

under this circumstance. The true positives are between 97.4% and
99.2%, and the true negatives are between 79.3% and 85.7%. It is
worth noting that when we only include misclassified emails, the
true positives stay the same, but the true negatives drop a little. The
reason is as follows: KARMA does not know anything about correctly
classified emails, and therefore may make some mistakes. Therefore,
in order to maintain both true positive and true negative, we recom-
mend that the administrator forms Soracle using both misclassified
and some correctly classified emails.

6.6 Performance Overhead
In this part of the section, we evaluate the performance of KARMA.
Let us first take a look at the theoretical value. In each iteration, the
time spent on the seed finder is a linear function with regards to
the size of misclassified data. The time spent on the peak finder –
which may be invoked many times – is with regards to the size of
training data, because each cluster, once decided, is deducted from
the working set. The time spent on the unlearning module is with
regards to the number of clusters. The number of clusters is relatively
small compared to the training data size, and the size of misclassified
data is smaller than the size of oracle set, and thus much smaller than
the size of training data. Therefore, the time complexity of KARMA

in each iteration is O(N), where N is the size of training dataset,
and the overall time complexity is O(kN), where k is the number of
iterations.

Our empirical evaluation show that the median overhead of per-
formance is 6.21 times of the training time with the maximum as
34.1 and the minimum as 3.81. It is worth noting that KARMA can
be incrementally deployed, i.e., any partial outputs can be used by
the administrator to repair the polluted learning model. For example,
if the administrator sets a satisfactory detection accuracy as 90%, the
maximum performance overhead is only 15.1 times of the training
time.

Note that although the performance of KARMA, an offline analysis
tool, is not ideal, KARMA is faster than the most naïve method that
searches the training set by brute force. The performance overhead
is exponential, because the method needs to include all the possible
subsets of the training set. As a comparison, our KARMA brings
down the performance overhead from exponential to linear in the
number of training points.

ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea Y. Cao et al.

6.7 Effects of Divergence Score Definition
In this part of the section, we study the effect of the divergence
score definition upon KARMA. As mentioned in Section 4.2.1, any
non-negative and symmetric definition of divergence score – which
represents similar contributions of samples made to a learning model
– can be used in KARMA. Thus, we compare three definitions: the
one defined in Section 4.2.1 (D1), Euclidean distance, and another
definition (D2) taking account into the feature frequency defined in
Appendix A.

Now let take a look at how D1, D2, and Euclidean distance affect
KARMA. We first use Euclidean distance, which performs the worst
among the three. In many cases, KARMA with Euclidean distance
does not converge, i.e., the final detection accuracy cannot reach
the vanilla level. The reason is that when computing the Euclidean
distance between two samples, we not only consider the common fea-
tures between these two, but also the different features. For example,
if two samples share many common features, but also have plenty of
different features, the Euclidean distance between these two samples
is large, contradicting with the fact that these samples make similar
contributions to learning model in their common features.

Next, we use D2 in KARMA. Unlike Euclidean distance, KARMA

with D2 converges, and the final detection accuracy is within ±1% of
the vanilla accuracy. The major difference between KARMA with D1
and D2 lies in the true positives and negatives. Evaluated against the
dictionary and mislabelling attacks, KARMA with D2 has a median
true negative as 92.3% ranging from 90.2% to 96.5%, and a median
true positive also as 92.3% ranging from 88.0% to 95.2%. That is, the
true negative of D2 is higher than the one of D1, but the true positive
is lower. Like all other researches, there is a trade-off between the
true positives and negatives in KARMA: When we try to boost one,
the other is lowered correspondingly.

To sum up, for all three definitions, D1 performs the best and Eu-
clidean distance performs the worst. This order aligns with how these
definitions deal with common and different features among samples,
especially different ones. D1 only considers common features but ig-
nore different ones all the time. D2 only considers common features
in the calculation of divergence scores, but when the cluster grows,
different features are included in the feature list. Euclidean distance
considers both common and different features among samples in the
calculation and the cluster growing stage.

6.8 Integrating Other Learning Systems
In this section, we evaluate two other learning systems to show
the generality of KARMA. The first system is a SVM-based spam
detector, showing that KARMA works with other learning algorithms,
and the second is a Bayes-based JavaScript malware detector (in
Appendix B), showing that KARMA works with other application
scenarios.

We show how to integrate KARMA with another support vector
machine (SVM) based spam filter. Because we cannot find an open-
source filter written in Python, we implement a version of a spam
filter with approximately 3000 lines of Python code by following
what has described in an online machine learning course [1, 4] taught
in Stanford University. Here are some details of the spam filter that
we implemented. The SVM library that we adopt is LIBLINEAR [3,
21], a popular open source tool that supports linear support vector

machines. The training phase of our spam filter can be divided as
three steps: preprocessing, feature extraction, and training. In the
preprocessing, we normalize each email by nine tactics, such as
removing non-words and replacing $ with ‘dollar’ (Details can be
found in the online course). Then, we extract features based on
1,900 spam words found commonly in SpamAssassin dataset [5],
and train the LIBLINEAR classifier. Our spam filter is consisted of
˜3,000 lines of Python code, and achieves 95.88% vanilla detection
accuracy.

Next, we integrate the KARMA with this SVM-based spam filter
(LIBLINEAR supports unlearning, called decremental learning), and
evaluate KARMA with polluted datasets. The results are very similar
to the one with SpamBayes and show that KARMA can successfully
restore the detection accuracy to the vanilla value with less than 1%
difference.

7 DISCUSSION
We are now discussing several important problems of KARMA.
Robustness of KARMA to Attacks. We are discussing the robust-
ness of KARMA to attacks in adversarial environment. There are
two cases to discuss: (i) attacks during the repairing process, and (ii)
attacks after the repairing process.

First, KARMA is robust to attacks during the repairing, because
there exists an oracle-in-the-loop feedback that can enhance the
security and mitigate potential attacks. Then, KARMA performs a
complete though prioritized search over the training set, i.e., KARMA

goes over every training sample in the search.
Second, KARMA is robust to attacks after the repairing, because

the administrator will block the data pollution attacks from the
same source. For example, the administrator can block the turk who
intentionally mislabels data in the training set and only adopt results
from trusted turks. We understand that attackers may compromise
new turks, but this at least reduces the attack surface.
False Positives and Negatives. In addition to the false positives and
negatives of KARMA, we believe that the oracle-in-the-loop feedback
can also help to improve false positives and negatives. Specifically,
the administrator will mitigate false positives by manually inspecting
the samples to unlearn and the users will report false negatives if the
model is not fully repaired.
Effects of KARMA on Unpolluted Model. If the learning model
is unpolluted, KARMA might still help to improve the model. Say,
for example, if the misclassification is caused by other reasons,
such as lack of data, the cause found by KARMA may help the
administrator or the developer to introduce new samples that can
clearly distinguish the misclassified and its cause. This, however, is
considered as beyond scope of the paper, and one may refer to the
literature [25, 32, 38] on introducing new samples.
Overfitting and Underfitting. The general problems of overfitting
and underfitting are orthogonal to the paper, and one may refer to
the literature [16, 40] for the problem. To the best of our knowledge,
KARMA does not cause additional overfitting or underfitting issues,
which we will discuss from two aspects: explanation and empirical
evaluation.

First, as shown in our deployment model, before an administra-
tor repairs the learning model with the misclassification cause, the
administrator will verify that samples found by KARMA are indeed

Causal Unlearning ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea

polluted. That is, the administrator will preserve correctly-labeled
samples to avoid overfitting and underfitting.

Second, our restored detection accuracy—without any verification
from the administrator—are very high against an independent dataset
showing no underfitting or overfitting. If there is either underfitting
or overfitting, the detection accuracy against the independent dataset
will be much lower. That is, in empirical evaluation, we do not
observe any overfitting or underfitting.

8 RELATED WORK
In this section, we will discuss related work. We start from a general
problem, adversarial machine learning, in Section 8.1, and then
discuss existing defenses to data pollution attacks in Section 8.2.
After that, we discuss other similar techniques in Section 8.3.

8.1 Adversarial Machine Learning
The problem that KARMA solves, i.e., the data pollution, belongs to
a broad research topic, called adversarial machine learning [8, 26].
Adversarial machine learning defines the behavior of machine learn-
ing models under the existence of adversaries. In particular, prior
works classify such attacks into two major categories: causative at-
tacks where an attacker has access to the training set, and exploratory
attacks where an attacker can only craft samples to probe or explore
the learning model.

8.1.1 Causative Attacks. There are many causative attacks,
or called data pollution defined in the literature. Perdisci et al. [35]
attacks PolyGraph [34] by injecting well-crafted invariants and mis-
leading the signature generation. Particularly, the attacker sends the
crafted traffic to a honeypot collecting worm traffic and such traffic
will be picked up by automatic worm signature generation tools,
such as PolyGraph. Similarly, Nelson et al. [33] pollute SpamBayes
by injecting emails with dictionary words. According to them, only
1% such emails in the training set can cause SpamBayes to mis-
classify an email with 90% probability. Other than Bayes classifier,
Biggio et al. [9] target support vector machine (SVM) and study
the corresponding pollution tactics. Fumera et al. [24] evaluate pat-
tern classification systems in general, and conclude that all of them
are vulnerable to data pollution attacks. Wang et al. [45] show that
crafted training samples can mislead the machine learning classifier
detecting malicious crowdsourcing workers.

All these causative attacks, or called data pollutions, serve as a
good motivation for the KARMA. For example, the pollution tech-
nique proposed by Nelson et al. [33] has been used in our evaluation.

8.1.2 Exploratory Attacks. Exploratory attacks are out of
scope of KARMA. For completeness, we still briefly talk about such
attacks in adversarial machine learning. Exploratory attacks can be
further classified as two sub-categories: model inversion [12, 23]
where an attacker infers training data samples based on the learning
model, and data evasion [7, 13, 29, 44, 45] where an attacker crafts
samples to evade the learning model. Model inversion is within the
scope of the machine unlearning proposed by Cao et al. However,
because the samples to unlearn are known in such scenario, which
is the private data identified by the user, it is not necessary to ap-
ply KARMA. Data evasion is also beyond the scope of the machine
unlearning paper.

8.2 Defense of Data Pollution
In this part of the section, we introduce prior works that defend
data pollution. Such works can be divided into two categories: filter-
ing polluted samples before training, and training a robust learning
model. First, both Brodley et al. [10] and Cretu et al. [17] introduce
an additional filtering layer to get rid of polluted samples. Brod-
ley et al. use majority consensus among different techniques, and
Cretu et al. adopt sanitization with micro-models in a voting scheme.
Similarly, Newsome et al. [34] cluster samples beforehand so that
outliers, such as polluted samples, can be filtered. Second, Dekel et
al. [19] minimize the damage that an attacker could make by formu-
lating the learning as a linear program and using an online-to-batch
conversion. Bruckner et al. [11] model the learner and the attacker
as a game with Nash equilibrium.

Techniques that filter polluted samples before training or make
learning model robust are orthogonal to and can be combined with
KARMA. If polluted samples bypass these approaches as evident by
new pollution attacks [19, 35], KARMA serves as a remedy approach
that repairs polluted learning models and brings the model to healthy
states.

8.3 Other Similar Techniques
Machine unlearning is a technique proposed by Cao et al. [14] that
makes learning systems forget what they have learned before. Cao et
al. convert a learning algorithm to a special form in statistical query
learning [28], which consists of a small number of summations. The
learning algorithm only depends on these summations, which are the
sum of some efficiently computable transformation of the training
data samples. Therefore, to unlearn a training sample becomes easy:
One just needs to subtract the transformations of that sample from
all the summations, and then update the learning model.

Machine unlearning only removes samples from a learning model
when the samples are specified. At contrast, KARMA tries to find
what data to remove from a learning model. As discussed in Sec-
tion 4.1, KARMA does utilize machine unlearning technique by
Cao et al., but is compatible with other incremental or decremental
machine learning [15, 20, 22, 37, 42, 43]. The reason we use ma-
chine unlearning is that machine unlearning is general, which makes
KARMA general as well.

BoostClean [31] detects and repairs domain value violations,
i.e., an attribute value is outside of its value domain, using statistical
boosting. As a comparison, their repairing is to correct the prediction
results of a machine learning model, but KARMA is to correct the
machine learning model itself.

Koh et al. [30] propose using influence functions to estimate the
influence of training samples upon the prediction results. Therefore,
their approach can be used to prioritize the administrator’s efforts
in inspecting the training set. The advantage of their approach is
that they do not need to remove any training samples and observe
causality. As a comparison, KARMA is more accurate and further
reduces the administrator’s efforts because KARMA directly observes
the effects by unlearning samples. For example, according to the
evaluation of Koh et al., the administrator needs to inspect 30% of
training data if 10% is polluted. At the same time, KARMA also
improves the efficiency from retraining models from scratch.

ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea Y. Cao et al.

9 CONCLUSIONS
In this paper, we present a new technique, called causal unlearning,
which actively searches the training set for the misclassification
cause in an iterative manner and then removes the cause to repair a
polluted machine learning system.

We implemented a prototype of KARMA for causal unlearning,
and evaluated it using SpamBayes, another SVM-based spam filter
and a JavaScript malware detection engine. Our evaluation results
show that KARMA can successfully identify the misclassification
cause, i.e., polluted samples, with true positive ranging between
98.0% and 99.97% and true negative ranging between 85.5% and
94.3%. Further, KARMA can repair polluted learning model and
restore the learning model’s accuracy to the vanilla value with less
than 1% differences.

10 ACKNOWLEDGEMENT
We would like to thank Nicolas Papernot (our shepherd), Alex Yang
and anonymous reviewers for their helpful comments and feedback.
This work was supported in part by National Science Foundation
(NSF) grants CNS-15-63843, and CNS-15-64055. The views and
conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of NSF.

REFERENCES
[1] CS229 machine learning (stanford university). http://cs229.stanford.edu/materials/

ML-advice.pdf.
[2] Enron-spam dataset. http://www.aueb.gr/users/ion/data/enron-spam/index.html.
[3] Liblinear. https://www.csie.ntu.edu.tw/~cjlin/liblinear/.
[4] Machine learning (stanford university). https://www.coursera.org/learn/

machine-learning.
[5] Spamassassin dataset. https://spamassassin.apache.org/publiccorpus/.
[6] SpamBayes. http://spambayes.sourceforge.net/.
[7] M. Q. Ali, A. B. Ashfaq, E. Al-Shaer, and Q. Duan, “Towards a science of anomaly

detection system evasion,” in IEEE Conference on Communications and Network
Security (CNS), September 2015.

[8] M. Barreno, B. Nelson, A. D. Joseph, and J. D. Tygar, “The security of machine
learning,” Mach. Learn., vol. 81, no. 2, pp. 121–148, Nov. 2010. [Online].
Available: http://dx.doi.org/10.1007/s10994-010-5188-5

[9] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support vector
machines,” in Proceedings of International Conference on Machine Learning, ser.
ICML, 2012.

[10] C. E. Brodley and M. A. Friedl, “Identifying mislabeled training data,” Journal of
Artificial Intelligence Research, vol. 11, pp. 131–167, 1999.

[11] M. Brückner, C. Kanzow, and T. Scheffer, “Static prediction games for adversarial
learning problems,” J. Mach. Learn. Res., vol. 13, no. 1, pp. 2617–2654, Sep.
2012.

[12] J. A. Calandrino, A. Kilzer, A. Narayanan, E. W. Felten, and V. Shmatikov, “You
might also like: Privacy risks of collaborative filtering,” in Proceedings of 20th
IEEE Symposium on Security and Privacy, May 2011.

[13] Y. Cao, X. Pan, Y. Chen, and J. Zhuge, “JShield: Towards real-time and
vulnerability-based detection of polluted drive-by download attacks,” in Pro-
ceedings of the 30th Annual Computer Security Applications Conference, ser.
ACSAC, 2014.

[14] Y. Cao and J. Yang, “Towards making systems forget with machine unlearning,”
in Proceedings of the 2015 IEEE Symposium on Security and Privacy, 2015.

[15] G. Cauwenberghs and T. Poggio, “Incremental and decremental support vec-
tor machine learning,” in Advances in Neural Information Processing Systems
(NIPS*2000), vol. 13, 2001.

[16] J. Cheng and R. Greiner, “Learning bayesian belief network classifiers: Algorithms
and system,” in Proceedings of the 14th Biennial conference, 2001, pp. 141–151.

[17] G. F. Cretu, A. Stavrou, M. E. Locasto, S. J. Stolfo, and A. D. Keromytis, “Casting
out Demons: Sanitizing Training Data for Anomaly Sensors,” in Proceedings of
the 2008 IEEE Symposium on Security and Privacy, ser. SP, 2008.

[18] C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert, “Zozzle: Fast and precise
in-browser javascript malware detection,” in Proceedings of the 20th USENIX
Conference on Security, 2011.

[19] O. Dekel, O. Shamir, and L. Xiao, “Learning to classify with missing and cor-
rupted features,” Mach. Learn., vol. 81, no. 2, pp. 149–178, Nov. 2010.

[20] P. Domingos and G. Hulten, “Mining high-speed data streams,” in Proceedings of
the Sixth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, ser. KDD, 2000.

[21] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, “Liblinear: A
library for large linear classification,” The Journal of Machine Learning Research,
vol. 9, pp. 1871–1874, 2008.

[22] Ó. Fontenla-Romero, B. Guijarro-Berdiñas, D. Martinez-Rego, B. Pérez-Sánchez,
and D. Peteiro-Barral, “Online machine learning,” Efficiency and Scalability
Methods for Computational Intellect, pp. 27–54, 2013.

[23] M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart, “Privacy in
pharmacogenetics: An end-to-end case study of personalized warfarin dosing,” in
Proceedings of USENIX Security, August 2014.

[24] G. Fumera and B. Biggio, “Security evaluation of pattern classifiers under attack,”
IEEE Transactions on Knowledge and Data Engineering, vol. 99, no. 1, 2013.

[25] D. J. Hsu, “Algorithms for active learning,” Ph.D. dissertation, University of
California, San Diego, 2010.

[26] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. D. Tygar, “Adversarial
machine learning,” in Proceedings of the 4th ACM Workshop on Security and
Artificial Intelligence, ser. AISec, 2011.

[27] J. Juneau, J. Baker, F. Wierzbicki, L. Soto, and V. Ng, The Definitive Guide to
Jython: Python for the Java Platform, 1st ed. Berkely, CA, USA: Apress, 2010.

[28] M. Kearns, “Efficient noise-tolerant learning from statistical queries,” J. ACM,
vol. 45, no. 6, pp. 983–1006, Nov. 1998.

[29] M. Kearns and M. Li, “Learning in the presence of malicious errors,” in Pro-
ceedings of the Twentieth Annual ACM Symposium on Theory of Computing, ser.
STOC, 1988.

[30] P. W. Koh and P. Liang, “Understanding black-box predictions via influence
functions,” ICML, 2017.

[31] S. Krishnan, M. J. Franklin, K. Goldberg, and E. Wu, “Boostclean: Automated
error detection and repair for machine learning,” CoRR, vol. abs/1711.01299,
2017. [Online]. Available: http://arxiv.org/abs/1711.01299

[32] C. Monteleoni, “Learning with online constraints: Shifting concepts and active
learning,” Ph.D. dissertation, Massachusetts Institute of Technology, 2006.

[33] B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph, B. I. P. Rubinstein, U. Saini,
C. Sutton, J. D. Tygar, and K. Xia, “Exploiting machine learning to subvert your
spam filter,” in Proceedings of the 1st Usenix Workshop on Large-Scale Exploits
and Emergent Threats, ser. LEET, 2008.

[34] J. Newsome, B. Karp, and D. Song, “Polygraph: Automatically generating signa-
tures for polymorphic worms,” in Proceedings of the 2005 IEEE Symposium on
Security and Privacy, 2005.

[35] R. Perdisci, D. Dagon, W. Lee, P. Fogla, and M. I. Sharif, “Misleadingworm
signature generators using deliberate noise injection,” in Proceedings of the 2006
IEEE Symposium on Security and Privacy, 2006.

[36] S. Perez. Microsoft silences its new a.i. bot tay, after twit-
ter users teach it racism. http://techcrunch.com/2016/03/24/
microsoft-silences-its-new-a-i-bot-tay-after-twitter-users-teach-it-racism/.

[37] E. Romero, I. Barrio, and L. Belanche, “Incremental and decremental learning
for linear support vector machines,” in Proceedings of the 17th International
Conference on Artificial Neural Networks, ser. ICANN, 2007.

[38] B. Settles, “Active learning literature survey,” University of Wisconsin–Madison,
Computer Sciences Technical Report 1648, 2009.

[39] S. Shen, S. Tople, and P. Saxena, “Auror: defending against poisoning attacks
in collaborative deep learning systems,” in Proceedings of the 32nd Annual
Conference on Computer Security Applications. ACM, 2016, pp. 508–519.

[40] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” J. Mach.
Learn. Res., vol. 15, no. 1, pp. 1929–1958, Jan. 2014.

[41] V. M. Telecommunications and V. Metsis, “Spam filtering with naive bayes –
which naive bayes?” in Third Conference on Email and Anti-Spam (CEAS), 2006.

[42] C.-H. Tsai, C.-Y. Lin, and C.-J. Lin, “Incremental and decremental training for
linear classification,” in Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD, 2014.

[43] P. E. Utgoff, “Incremental induction of decision trees,” Mach. Learn., vol. 4,
no. 2, pp. 161–186, Nov. 1989. [Online]. Available: http://dx.doi.org/10.1023/A:
1022699900025

[44] N. Šrndic and P. Laskov, “Practical evasion of a learning-based classifier: A case
study,” in Proceedings of the 2014 IEEE Symposium on Security and Privacy,
2014.

[45] G. Wang, T. Wang, H. Zheng, and B. Y. Zhao, “Man vs. machine: Practical
adversarial detection of malicious crowdsourcing workers,” in Proceedings of
USENIX Security, August 2014.

http://cs229.stanford.edu/materials/ML-advice.pdf
http://cs229.stanford.edu/materials/ML-advice.pdf
http://www.aueb.gr/users/ion/data/enron-spam/index.html
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.coursera.org/learn/machine-learning
https://www.coursera.org/learn/machine-learning
https://spamassassin.apache.org/publiccorpus/
http://spambayes.sourceforge.net/
http://dx.doi.org/10.1007/s10994-010-5188-5
http://arxiv.org/abs/1711.01299
http://techcrunch.com/2016/03/24/microsoft-silences-its-new-a-i-bot-tay-after-twitter-users-teach-it-racism/
http://techcrunch.com/2016/03/24/microsoft-silences-its-new-a-i-bot-tay-after-twitter-users-teach-it-racism/
http://dx.doi.org/10.1023/A:1022699900025
http://dx.doi.org/10.1023/A:1022699900025

Causal Unlearning ASIA CCS ’18, June 4–8, 2018, Incheon, Republic of Korea

Appendices

A ANOTHER DIVERGENCE SCORE
In the appendix, we define another divergence score between a
cluster and a sample called D2. To calculate D2, we need to main-
tain two lists: (1) all the features in the cluster, < F1, F2, F3, ... >,
and (2) the number of occurrence of each features in the cluster,
< N 1,N 2,N 3, ... >. Then, we still obtain the common feature list
between the cluster and the sample, < Fk1, Fk2, ...Fkj >. This di-
vergence score between the cluster and the sample is defined in
Equation 3.

1
j2
(

1
Nk1 + 1

+
1

Nk2 + 1
+ ... +

1
Nkj + 1

) (3)

If the cluster only contains one sample, i.e., we want to compute
the divergence score between two samples, Equation 3 boils down
to 1

2j , half of the divergence score defined in D1. Because diver-
gence score is a relative value, the definitions in D1 and D2 of the
score between two samples are consistent. Note that what the new
divergence score definition introduces is the concept of frequency.
When a feature occurs more in the cluster, the contribution to the
divergence score between the cluster and a sample with the feature
is smaller, as one divided the frequency of the feature plus one is
smaller. At contrast, when a feature occurs less, the contribution to

the score is larger. So, during clustering, the active unlearning algo-
rithm tends to include samples with more high frequency features
and less low frequency ones in the current cluster.

B EVALUATION ON A BAYES-BASED
JAVASCRIPT MALWARE DETECTOR

In this section, we integrate KARMA with Zozzle [18], a JavaScript
malware detection engine using Naïve Bayes. The purpose of the
experiment is to show that KARMA works with not only spam de-
tectors but also malware detectors. Because Zozzle is closed-source,
we reimplement a Java version by following their paper, and ob-
tain an implementation from Cao et al. [14] where they implement
machine unlearning and evaluate the effectiveness. Their Zozzle
implementation is based on Java, and we use Jython [27] to integrate
our Python implementation of KARMA with their Zozzle. Together
with their source code, we also obtain their The dataset that we
use contain 142,350 real-world JavaScript malware samples from
Huawei, JavaScript from top 10,000 Alexa web sites, and 15,520
polluted JavaScript. All other setups are similar to the setup of our
previous experiment, we divide unpolluted samples into 10 equal
parts: nine parts plus the polluted samples for training, and the rest
equally divided for the oracle and the testing dataset.

The result shows that KARMA can successfully identify 98.9%
polluted JavaScripts and restore the detection accuracy against the
testing dataset to the vanilla value with less than 0.9% difference.

	Abstract
	1 Introduction
	2 Threat Model
	3 Deployment Model
	4 Design
	4.1 Overview
	4.2 Causality Analysis
	4.3 Causality Removal (Unlearning)

	5 Implementation
	6 Evaluation
	6.1 Attacks and Datasets
	6.2 Comparing with Learning-based Approaches
	6.3 True Positives and Negatives
	6.4 Effectiveness in Accuracy Repair
	6.5 Effects of Oracle Sets
	6.6 Performance Overhead
	6.7 Effects of Divergence Score Definition
	6.8 Integrating Other Learning Systems

	7 Discussion
	8 Related Work
	8.1 Adversarial Machine Learning
	8.2 Defense of Data Pollution
	8.3 Other Similar Techniques

	9 Conclusions
	10 Acknowledgement
	References
	A Another Divergence Score
	B Evaluation on A Bayes-based JavaScript Malware Detector

