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Abstract—Face Verification Systems (FVSes) are more and
more deployed by real-world mobile applications (apps) to verify
a human’s claimed identity. One popular type of FVSes is called
cross-side FVS (XFVS), which splits the FVS functionality into
two sides: one at a mobile phone to take pictures or videos
and the other at a trusted server for verification. Prior works
have studied the security of XFVSes from the machine learning
perspective, i.e., whether the learning models used by XFVSes
are robust to adversarial attacks. However, the security of other
parts of XFVSes, especially the design and implementation of the
verification procedure used by XFVSes, is not well understood.

In this paper, we conduct the first measurement study on the
security of real-world XFVSes used by popular mobile apps
from a system perspective. More specifically, we design and
implement a semi-automated system, called XFVSCHECKER, to
detect XFVSes in mobile apps and then inspect their compliance
with four security properties. Our evaluation reveals that most of
existing XFVS apps, including those with billions of downloads,
are vulnerable to at least one of four types of attacks. These
attacks require only easily available attack prerequisites, such
as one photo of the victim, to pose significant security risks,
including complete account takeover, identity fraud and financial
loss. Our findings result in 14 Chinese National Vulnerability
Database (CNVD) IDs and one of them, particularly CNVD-
2021-86899, is awarded the most valuable vulnerability in 2021
among all the reported vulnerabilities to CNVD.

I. INTRODUCTION

Due to recent advances in face recognition techniques,
Face Verification Systems (FVSes) are now being more and
more deployed and used to verify a human’s claimed identity.
During the era of the global pandemic, one popular use
case of FVS, called cross-side FVS (XFVS), is to take a
picture or a short video of a target person using his/her
mobile phone (potentially untrusted) and then upload them to a
trusted server for verification. Such an XFVS is different from
traditional use cases such as local verification inside a trusted
execution environment (TEE), e.g. iPhone’s FaceID [1], or
fully remote verification inside trusted physical environments
like government facilities [2]. More specifically, many popular
mobile apps, such as WeChat (the world’s largest standalone
mobile app) and Alipay (the most popular online payment
app in China), offer XFVSes for user verification in sensitive
operations, e.g. changing payment password.

An XFVS needs to first collect the target person’s face
data and then verify his/her identity, which usually takes “two

phases”: (i) liveness detection and (ii) identity verification.
The former is to ensure that the target person in front of the
camera is alive instead of a replayed video or a static picture,
while the latter is to verify the target person’s identity by
comparing the collected face with the pre-registered reference
face. Currently, both these two phases usually require the use
of machine learning-based models. For example, models are
used in liveness detection to recognize face movements or
detect how the user’s face reflects different colors of light.

Prior works have studied the attacks against XFVSes (and
other FVSes) from the perspective of adversarial machine
learning (ML), including presentation attacks [3], [4], [5], [6]
and adversary attacks [7], [8], [9], [10]. For example, Li
et al. [11] show that liveness detection can be fooled by a
deep-faked video crafted from the target person’s images. In
response to these attacks, researches [12], [13], [14] have also
proposed corresponding defensive methods. For example, Tang
et al. [15] utilize face textual features and reflection time to
defend 2D presentation attacks.

However, despite the previous success in studying the ML-
driven attacks against XFVSes and the escalating arms race
between defenses and attacks, one largely ignored perspective
of XFVS security is the system design. In other words, it
remains unclear whether the verification protocol adopted by
XFVSes is secure due to the involvement of complex cross-
sided two-phase face verification. From the ML perspective,
the evasion bar is becoming higher and higher with low attack
accuracy due to more advanced countermeasures. However,
from the system perspective, the evasion bar is still low
because the existence of one logic vulnerability in the two-
phase face verification protocol will make all parts vulnerable
to adversaries, as indicated by the famous wooden barrel
theory.

In this paper, we conduct the first systematic measurement
study on the security of real-world XFVSes used by popular
mobile apps from the system perspective, i.e., understanding
the security of the cross-sided two-phase face verification.
More specifically, we design and implement a semi-automated
testing framework, called XFVSCHECKER, to detect and
analyze the security of XFVSes inside Android apps. By
thoroughly studying XFVS code and documents, we sum-
marize a generic workflow of XFVSes and pinpoint four
security properties an XFVS should satisfy: (i) SP1. reliable
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environment, (ii) SP2. camera security, (iii) SP3. reliable
liveness, and (iv) SP4. data consistency. XFVSCHECKER then
uses explicit evaluation procedures and scoring rules to assess
how XFVS apps comply with these security properties.

We evaluate XFVSCHECKER on 43,422 Android apps from
Google Play and Xiaomi App Market, which reveals that
5.1% of apps adopt XFVSes, with the top SDKs making up
the majority of the XFVS ecosystem. The security analysis
on top SDKs shows that most existing real-world XFVS
apps—even top ones with billions of downloads including the
aforementioned WeChat and Alipay—are vulnerable to at least
one of 4 different attacks, i.e., Liveness Bypassing Attack
(AT1), AB Attack (AT2), Camera Hijacking Attack (AT3)
and Downgrade Attack (AT4). To the best of our knowledge,
XFVSCHECKER is the first system to study all these attacks
except for AT3 [11]. Moreover, XFVSCHECKER is the first
to find real-world apps that are vulnerable to these four types
of attacks including AT3.

2. Bob passes  
liveness detection

app X X's server

1. Bob claims to be Alice
and asks face verification

I'm Alice,
verify me

using my face! Alice verified!

3. Bob replaces uploaded
data with  Alice's photo

Fig. 1. An Attack Example on XFVSes in Mobile Apps.

Fig. 1 illustrates an example of AT2 (AB attack) found in
several apps, such as Pingan Jinguanjia, one popular insurance
app in China with 240 million users [16]. Specifically, Bob,
the adversary, uses his face to pass the first phase (liveness
detection) and then adopts a photo of Alice, the victim,
to pass the second phase (identity verification). This is a
typical case where SP4. data consistency is not satisfied, so
that the face matched is not the face that passes liveness
detection. These attacks can bring serious security hazards,
including a complete takeover of victims’ accounts, identity
impersonation, financial loss, etc.

We responsibly disclose all our findings and attacks to re-
lated vendors, communicate intensively with their developers,
and provide mitigation suggestions to protect the security of
XFVSes in their apps. We find that it is very challenging
for developers to fully fix the security problems. Interestingly,
although WeChat fixes the vulnerability after our disclosure,
the fix is still vulnerable, and we have gone through 3 rounds
of battles (i.e., another escalated attack after a fix) with
WeChat to finally patch the vulnerability. For vulnerable apps
from China, we also reported our findings to the Chinese
National Vulnerability Database (CNVD)1 [17] and receive 14
CNVD IDs, and one of them (CNVD-2021-86899) is awarded
the most valuable vulnerability in 2021 by CNVD. Note that
at the time of publication, all vulnerabilities mentioned in this
paper have been fixed.

1CNVD is the counterpart of NVD in China and documents zero-day
vulnerabilities of Chinese applications like the US NVD.

In summary, this paper makes the following contributions:
• We perform the first comprehensive measurement analy-

sis on the security of cross-side face verification systems
(XFVSes) from a system perspective, i.e., understanding
the security of the cross-sided two-phase verification
procedure.

• We design a principled method and implement a semi-
automated framework named XFVSCHECKER to detect
XFVS apps and analyze the security of XFVSes by
inspecting how four security properties are satisfied with
clear assessment rules.

• Our evaluation result reveals that real-world XFVSes,
including those adopted by WeChat and AliPay, are under
significant security threats. We summarize four typical
attacks and illustrate them with case studies. We respon-
sibly report the security issues and provide mitigation
suggestions to related vendors.

Organization. §II states the research problem and threat
model of this paper, and §III describes the measurement of
XFVSes in real-world apps. In §IV we analyze the security
of XFVSes, and the results are shown in §V. We discuss
lessons learned and possible mitigation in §VI, and ethic and
disclosure issues in §VII. We discuss related work in §VIII
and conclude our work in §IX.

II. THREAT MODEL: XFVS

A face verification system (FVS) is designed to verify
whether a person is who he/she claims to be, by comparing
his/her submitted face data with previously enrolled reference
face data. A similar concept is a face identification system
(FIS), which aims to identify a person from a database of
known faces. In other words, an FVS performs “one-to-
one face matching”, whereas an FIS does “one-to-many face
matching” [18], [7].

To verify a person’s identity, an FVS first collects his/her
face data (face collection), and then verifies whether the
collected face data is matched with the reference face data
(face matching). In real-world applications, the two steps of
face collection and face matching may occur in different
places. Based on the split between face collection and face
matching, we classify FVSes into three types: local FVS,
remote FVS, and cross-side FVS, as shown in Fig. 2:

• Type I: Local FVS. A local FVS is designed to collect
and match faces within the user’s device. The face data
are saved locally and never leave the device. To ensure
its security, modern local FVSes, such as FaceID [1]
on iOS and its counterparts on Android [19], [20], are
often protected by a trusted execution environment (TEE),
such as the Secure Enclave [1] on iOS devices, or
TrustZone [21] on Android (Arm) devices.

• Type II: Remote FVS. A remote FVS is designed to
collect and match faces at a location away from the
user, such as those used at border gates [2]. As these
FVS devices are maintained at a physical location, they
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Fig. 2. FVS Classification according to Where Face Collection and Face
Matching Take Place.

typically incorporate protections against physical and
network adversaries.

• Type III: Cross-side FVS. A cross-side FVS (XFVS)
collects faces on user-side devices, sends the face data
to a trusted server, and performs face matching on the
server side. Unlike local and remote FVSes which have
to be done on specific devices, currently XFVSes usually
allow users to use them from different devices, thus users
can remotely verify their identities at any time and any
place.

Our threat model of XFVS security involves two parties: (i)
an untrusted client, and (ii) a trusted server. First, an XFVS
client is untrusted because attackers can use XFVSes on a
device under their control, such as a custom ROM, a rooted OS
or even a phone with special hardware. More specifically, in-
scope attacks involve but are not limited to code injection and
data tampering, which modify client-side XFVS code and data.
Second, an XFVS server is trusted because attackers do not
have any control over the server-side code. At the same time,
an XFVS server may be vulnerable: For example, a vulnerable
server may forget to validate the untrusted data coming from
the client.

III. XFVS APPS: A MEASUREMENT STUDY

In this section, we describe how XFVSCHECKER detects
the use of XFVSes in real-world mobile apps and then measure
the statistics of XFVS usage.

TABLE I
Downloaded Apps from Google Play and Xiaomi App Market.

App Market # Apps Privacy Policies Categories

Google Play 12,503 11,860 (94.9%) 33
Xiaomi App Market 30,919 30,529 (98.7%) 16
Sum 43,422 42,389 (97.6%) -

Dataset. We collect 43,422 apps from Google Play [22]
and Xiaomi App Market [23] during May 2021, as shown
in Table I. Specifically, we download top free and trending
apps across all 33 categories from Google Play, and top apps
from all 16 categories of the Xiaomi App Market. Note that
all game-related apps are categorized as one “Game” category.
We also download the privacy policies of these apps from their
app introduction pages in the market.

A. Detecting XFVS Apps

The key idea of detecting XFVS apps is that the semantics
of “face” and “verification” should be closely present in
the apps, with clear boundaries from the rest of the code.
Therefore, we use a lightweight static analysis method to
locate such semantics from app code and privacy policies, as
illustrated in Fig. 3.

1. Filter by
permissions

Internet

Camera

Java
class

JNI
funciton 

face... verify, auth...

2. Filter by  
face & verification semantics

XFVS appsAll apps

privacy
policy

3. Filter by code
semantics cohesion

cohesion> θ

Fig. 3. Overview of How XFVSCHECKER Detects XFVS Apps.

First, XFVSCHECKER excludes apps that do not request
CAMERA or INTERNET permissions in their manifest files,
because XFVS apps need to use cameras to capture face data
and send them to their servers via the network.

Second, XFVSCHECKER matches face or verification re-
lated keywords in app code and privacy policies. Given an
app in APK format, XFVSCHECKER uses Androguard [24]
and LIEF [25] to extract all fully qualified Java class
names and JNI function names from its binary code. Then
XFVSCHECKER searches the above code names and privacy
policies, to find all occurrences of keywords shown in Table II,
which are carefully selected to avoid false positives. For
example, “detect” is not included because it is more related to
locating faces in an image (face detection) rather than verifying
users’ identities. Note that natural language processing (NLP)
techniques, including word segmentation, lemmatization and
negative sentiment analysis are used before keyword matching.
For example, deny words such as “Facebook” and “interface”,
and negative sentiments such as “we do not use your face
information” are excluded.

TABLE II
Face and Verification Keywords for App Code and English Privacy Policy,

While Their Chinese Equivalents Are Used for Chinese Privacy Policy.

Semantics Keywords

Face “face”, “facial”, “liveness”
Verification “verify”, “authenticate”, “compare”

Third, XFVSCHECKER computes the semantics cohesion
for each code package, which is the percentage of class or

3



0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

proportion of matched semantics

5

10

15

20

25

30

35

40

45
# 

gr
ou

ps

prefix of length 2
prefix of length 3
prefix of length 4

Fig. 4. Selecting the Threshold based on Semantics Cohesion.

function names with keywords related to face or verification.
For example, if a package has three classes in total and
two of them contain corresponding keywords, its cohesion
value is 2/3. XFVSCHECKER keeps apps with high semantics
cohesion, because the code of XFVSes usually tightly appears
in a group of code, i.e. SDKs or libraries, rather than scattered
all over the app. To do this, XFVSCHECKER calculates
semantics cohesion for each code package and counts the
number of code packages with same cohesion. The results,
in different prefix length, are shown in Fig. 4, which shows
most of the code packages, either have a semantics cohesion
well below a value or well above a value. We then choose the
threshold of 0.7, the average of the lowest points of the three
lines in Fig. 4, to differentiate XFVS code from others (more
details in Appendix B).

Manual confirmation. Following the above steps,
XFVSCHECKER finds 2,273 real-world apps with rich
face verification semantics. We then randomly select 100
apps to manually confirm whether or not they are XFVS
apps. Two experts are asked to dynamically run these apps
and locate XFVSes in them. Among all 100 apps, 89 apps
are confirmed to be XFVS apps as we successfully triggered
XFVSes in them. There are 6 apps that we cannot trigger
XFVSes because we lack special privileges such as a specific
bank card, but we find on the Internet that there are people
using XFVSes in them. The rest five apps are false positives.

Further manual analysis of these false positives reveals that
they do contain XFVSes. More specifically, they do integrate
third-party XFVS SDKs, but do not use them. Instead, they
use face-related techniques to provide photo beautification or
emoji generation. Therefore, we filter apps with tags such as
“beautify” and “emoji” in their app descriptions. After this
step, we eliminated 60 apps from the original 2,273 apps,
leaving 2,213 apps.

B. XFVS Measurement Results

We then measure the prevalence and distribution of XFVS
apps, as well as top XFVS SDKs.

Prevalence. XFVSCHECKER finds 2,213 XFVS apps out
of 43,422 real-world apps (5.1%) in two markets, indicating

TABLE III
XFVS Apps Prevalence.

Market Google Play Xiaomi App Market Sum

# XFVS 78 (0.6%) 2,135 (6.9%) 2,213 (5.1%)

that XFVS apps are popular now. Note that XFVS apps are
often top apps with large numbers of users, for example, these
2,213 XFVS apps have an average of 38M downloads. Another
interesting finding is that Xiaomi App Market has more XFVS
apps than Google Play (6.9% VS. 0.6%), indicating that
XFVSes are more used in China.

Distribution. We study the distribution of XFVS apps
across different categories, and the results are shown in Fig. 5.
Note that we merge similar categories across app markets
and within each market for the convenience of presentation,
and we get 13 categories with XFVS apps. We can see that
finance, social, and transportation are the top categories, and
apps in these categories often contain very sensitive data and
operations. For example, we find that XFVSes are widely used
in these apps to verify users’ identities when they log in, query
sensitive information and recall passwords, etc. Therefore,
attacks on XFVSes can cause serious consequences to users.
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Fig. 5. Categories of XFVS Apps in Xiaomi App Market and Google Play.
Note that Because There are Far More XFVS Apps in Xiaomi App Market
than in Google Play, We Use Different y-axes.

Top XFVS SDKs. We cluster the XFVS code according
to the prefixes of their package names and then identify
XFVS SDKs. Table IV lists the top 10 SDKs in the Xiaomi
App Market and the top 4 SDKs in Google Play, as well
as the number of apps that have integrated these SDKs for
face verification. These SDKs are from well-known software
developers, including Internet giants such as Alibaba [26],
Tencent [27], Baidu [28], and leading AI companies such as
Sensetime [29], Megvii [30], FaceTec [31], etc, and they are
widely used by a large number of users.

In all 2,213 XFVS apps, 2,108 apps (95.3%) use at least
one of these top SDKs. We find that a large number of apps
have integrated multiple SDKs, resulting in the top SDKs in
the list being used 2,689 times. Specifically, there are 53 apps
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TABLE IV
Top XFVS SDKs of Xiaomi App Market (Top 10) and Google Play (Top

4), and The Number of Apps that Use Them.

No. SDK Name # Apps No. SDK Name # Apps

1 Alibaba [26] 475 8 PingAn [32] 191
2 Webank [27] 452 9 Linkface [33] 63
3 Baidu [28] 332 10 YITU [34] 50
4 SenseTime [29] 307 11 FaceTec [31] 25
5 Alipay [35] 277 12 Jumio [36] 23
6 CloudWalk [37] 241 13 Onfido [38] 20
7 Megvii [30] 223 14 Daon [39] 10

that use more than 3 SDKs. One reason is that an app may
use different XFVS SDKs for different functions. For example,
an app for handling government affairs in Zhejiang Province
China, named ZheLiBan, uses Aplipay SDK for users to login
with their faces, and Sensetime SDK for checking digital ID
documents.

These statistics show that top SDKs make up a major
proportion of the XFVS ecosystem, implying that their security
is representative of XFVS apps. Therefore, the study below
will mainly focus on these top SDKs.

IV. XFVS SECURITY ANALYSIS

In this section, we first summarize a generic workflow of
XFVS (§IV-A) by studying top XFVS SDKs. Then we propose
the key security properties that should be satisfied (§IV-B).
After that, we discuss the methods to achieve these properties
and our evaluation framework for testing the security of XFVS
apps (§IV-C).

A. XFVS Workflow

For the top XFVS SDKs listed in Table IV, we thoroughly
analyze their official documents, manually test their usage, and
reverse-engineer their code, to figure out their general steps.
We then abstract a generic workflow of XFVSes without loss
of correctness, as shown in Fig. 6.

A typical XFVS includes four steps: initialization, face
collection, liveness detection, and identity verification. The
former two steps are preparation works; the latter two are the
two phases used for face verification. We introduce each step
below.

S1: Initialization. The main purpose of this step is to set
up the configurations for XFVS client-side code and models.
In this step, the XFVS client collects information about the
local environment and sends them to the server (1a & 1b),
along with the user ID to be verified, say user A. The server
then considers various criteria, including the risk level of
the client environment, the preferences of user A, and risk
control settings (allowlists or denylists), to decide the XFVS
configurations and send them back to the client (1c & 1d). For
instance, if the server finds that the local environment is risky
or A is on the denylist, it may require more complex liveness

detection, request additional validations, or even reject the use
of face verification.

A challenging task here is to correctly and completely
collect the local environment information, such as whether
the OS is rooted, whether the APK is repackaged, whether
the process is being hooked, etc. The client may use tools
such as Google’s SafetyNet [40] or its successor Play Integrity
API [41] to help them decide whether the environment is
reliable. However, several previous works [42], [43] show
these tools can be manipulated or bypassed by the attackers,
as these tools still run in the user-controlled client without
TEE-level protection.

After this step, the server knows which user to verify and
the client model is set with corresponding configurations (1e).

S2: Face Collection. The purpose of this step is to collect
user A’s face data by invoking the camera. Different XFVSes
may collect face data of different forms, such as one or more
pictures and videos. The collected face data is then used in
subsequent steps (S3 & S4). Note that this step may take place
several times according to the result of the liveness check (S3).
In some SDKs, S2 and S3 may take place at the same time,
i.e. real-time liveness check.

S3: Liveness Detection. The goal of a liveness check, or
liveness detection, is to ensure that a real person presents in
front of the camera, rather than a screen displaying images
or videos, or a man with a mask. In theory, a liveness check
should be performed on the server side as client-side results
cannot be trusted. However, if all images and videos are sent
to the server for liveness check, it can cause huge server-side
resource consumption as well as privacy concerns. Therefore,
most SDKs have a client-side liveness check, or called local
liveness check, to serve as the first layer of filtering to block
requests that are obviously not started by real people.

Local liveness check is performed by the client models,
using configurations from S1 (3a & 3b). Different liveness de-
tection methods, such as silent-based and action-based liveness
detection, may be applied. In practice, client models may use
watermarks and checksums to ensure the validity and integrity
of the detection result (3c).

S4: Identity Verification. The goal of this step is to validate
user A’s identity based on the provided face data, as well
as client-side checking results, which are examined to ensure
they are not tampered with (4a & 4b). Then the server-side
liveness check is performed to further confirm that the one
to be verified is indeed a live person (4d). After that, face
matching is performed to check if the provided face can be
matched with user A’s previously-enrolled reference face (4e).
Whether the faces match or not determines the verification
result, which is then sent back to the client (4f & 4g). After
this step, a face verification request is completed.

According to our research on top SDKs, most SDKs follow
the above workflow to conduct cross-side face verification.
However, due to the absence of a unified standard, the specific
implementation of each SDK varies. For instance, some SDKs
overly rely on client-side liveness detection and omit the
server-side liveness check, thus posing security risks. The
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Fig. 6. A Generic Workflow of XFVS.

following subsection presents our principled analysis of this
workflow.

B. XFVS Security Properties

As previously pointed out, the untrusted client environment
makes XFVSes insecure by nature. However, in practice, a
variety of protection methods are proposed by real-world
apps to protect the integrity of XFVS code and data. This
subsection describes the necessary security properties that
these protection methods must meet.

TABLE V
Security Properties for XFVS Implementations.

No. Security Properties Concerned Steps

SP1 Reliable Environment S1, S2, S3
SP2 Camera Security S2
SP3 Reliable Liveness S3, S4
SP4 Data Consistency S1, S2, S3, S4

As shown in Table V, we propose four key security proper-
ties, by considering confidentiality and integrity in and across
each step of the workflow, so that together they can guarantee
the security of XFVS.

SP1: Reliable Environment. Reliable Environment prop-
erty is to ensure that the code, data and machine learning
models at XFVS client are not tampered with by local attack-
ers. To meet this property, XFVS apps should be robust to the
following threats: 1) Threats to OS-level reliability, including
rooted OSes, emulators, and custom ROMs. For example,
attackers might use a custom ROM with modified networking
APIs, so that the communication data between the XFVS client
and server can be controlled by the attackers. 2) Threats to

static code integrity, including repackaged APKs and patched
binaries. For example, attackers can control the logic of XFVS
client-side code by statically instrumenting the SDK’s native
share libraries (.so files) if they are not well protected. 3)
Threats to dynamic code integrity, including debugging and
hooking. For example, attackers may use hooking tools such
as Frida [44] and Xposed [45] to change the local liveness
result. SP1 is the fundamental security property for client-side
XFVS steps from S1 to S3.

SP2: Camera Security. Camera Security property is to
ensure that the face data to verify should come directly from
the physical camera lens, instead of an injected data stream.
Attackers may manipulate the camera APIs and camera drivers
(by violating SP1), or even physically modify the hardware,
to inject prepared images or videos, such as a deepfake
video [46], into the XFVS apps. As most current mobile
devices do not support TEE-level or chip-level secure cameras,
this security property is very hard to satisfy, making SP2 the
shortest plank of the wooden barrel. Even so, XFVS apps
should still use mitigation methods, e.g. by using low-level
APIs or adding checks to raise the bar for attacks. SP2 is
related to S2 in the workflow.

SP3: Reliable Liveness. Reliable Liveness property is
to accurately determine whether the collected face data are
being presented by a live person, as opposed to a fake or
synthetic face. The main purpose of this security property
is to combat the threat of presentation attacks. For example,
attackers may use a printed picture [47], a screen showing
the victim’s images or videos [48], or even wear a carefully
crafted 3D mask [49]. Note that this property aligns with
previous works [50], [14], [51] on face recognition security.
As previously discussed, SP3 should be met both at the client
side and server side, i.e. S3 and S4 in the workflow.
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SP4: Data Consistency. Data Consistency property is to
ensure that XFVS data—including the collected face, the
liveness configurations, and the validation results—are con-
sistent between all steps across the client and the server. Most
importantly, the server should validate the data consistency
by itself, instead of blindly trusting results from the client
side. For example, the app in Fig. 1 does not guarantee that
the face data for liveness detection and for face matching are
consistent. SP4 should be satisfied across all XFVS steps, from
S1 to S4.

We summarize four security properties for apps to ensure
the security of XFVSes. Note that these security properties
are not independent of each other, and there may be overlaps
between different properties. For example, in most cases, SP4
may not be satisfied unless SP1 is met. Nevertheless, as the
wooden barrel effect suggests, any unmet SP may result in the
failure of the XFVSes.

C. Checking Security Properties

Scoring Rules. XFVSCHECKER checks how an XFVS app
satisfies each security property, from SP1 to SP4, along the
XFVS workflow (Fig. 6). To ensure objectivity and accuracy
in the evaluation process, we rely on automated methods
as much as possible, leveraging pre-tailored sandboxes and
testing scripts. For any areas where automation is not possible,
we conduct manual testing by multiple security experts for
result cross-validation. This approach enables us to automate
testing for the majority of SP1 and SP2, while largely relying
on manual efforts to evaluate SP3 and SP4.

We assign a score from 1 to 6 to each security property. If
our security experts conclude that an XFVS app fully satisfies
a security property, for example, all data are ensured to be
consistent, it will obtain a score of 6 (⋆⋆⋆) on SP4. If only
the preliminary requirements are met, such as using silent
liveness detection on SP3, a minimum score of 1 (⋆) is
assigned. In other cases, an intermediate score is given based
on how well the XFVS app meets the security property. The
complete scoring rules are listed in Table IX in Appendix. We
discuss each step in detail below.

1) Checking Environment (SP1): The first step is to
check whether XFVS apps adopt anti-reversing defenses to
be resilient to unreliable environments. The Open Source
Foundation for Application Security (OWASP) [52] has a
project named Mobile Application Security Testing Guide
(MASTG) [53], which recommends a common testing pro-
cedure on the resiliency of mobile apps and is widely used
by existing works [54], [55]. It mainly contains 13 resiliency
metrics in its latest version (v1.5.0), where 6 of them, i.e.
MSTG-RESILIENCE-1 to MSTG-RESILIENCE-6, are related
to environment checking of XFVS, as shown in Table VI.

To test these resiliency items, XFVSCHECKER uses a com-
bination of automated sandbox testing and manual analysis.
First, XFVSCHECKER builds several sandboxes according
to the detailed items in MASTG. These sandboxes include

TABLE VI
Resiliency Metrics Tested by XFVSChecker. Note That 1) MR1 is Short for
MSTG-RESILIENCE-1 and So Are the Others; 2) We Merge MR4 and MR6

Because They Are All Related to Hooking Techniques in Most Cases.

Resiliency Item MSTG-ID Example Methods

Root & ROM
Detection MR1

root feature detection [56],
custom ROM detection,
SafetyNet [40]

Anti-Debugging MR2
debugger prevention [57],
debugger port/flag/API
detection

File Integrity MR3 APK signature [58],
.so file integrity[59]

Anti-Hooking MR4&6
memory integrity detection,
hook tool detection [60],
hooking prevention [61]

Emulator
Detection MR5 emulator file/property

detection [62]

rooted systems and custom ROMs (MR1), debugging environ-
ment (MR2), repackaged apps (MR3), emulators (MR5), and
hooked systems (MR4 & MR6). XFVSCHECKER manages
the sandbox settings to make sure that one sandbox only
reflects one resiliency item. For example, to build a sandbox
that only has hook abilities (MR4 & MR6) but does not have
root features (MR1), XFVSCHECKER embeds hooking code
such as Frida agent or Xposed modules into the target app and
utilize root-hiding tools [63], [64] to remove root features.

Then XFVSCHECKER dynamically invokes XFVSes of
the target app in these sandboxes. If users can finish face
verification in any one of these sandboxes, it indicates that the
target app lacks resilience to the corresponding metric. If the
target app detects all the sandboxes, we then introduce manual
efforts to further test its resiliency against risky environments.
Specifically, two security experts with extensive experience in
mobile app security and reverse engineering manually evaluate
the target app. §A in Appendix gives some manual evaluated
examples.

The scoring of SP1 is straightforward, that is, the score an
app gets is directly proportional to the number of resiliency
items it can satisfy.

2) Checking Camera Security (SP2): We summarize possi-
ble methods that XFVS apps can use to protect camera data,
listed in order of their protection strength from weak to strong.

• Using framework level camera APIs, such as onPre-
viewFrame and takePicture.

• Using native camera APIs [65] instead of framework
APIs. However, low-level APIs may not be compatible
with old devices and they can also be attacked.

• Using the above APIs with protection methods, such as
validating frames from both front and back cameras.

• Recording the screen to validate data from the cam-
era. Data injected into the camera APIs may display
exceptions on the screen, such as a mismatch between
resolution and screen size, and recording the screen can
detect such exceptions.

• Using hardware-level protection such as a secure cam-
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era [66]. However, this capability is not widely supported
in current mobile devices.

XFVSCHECKER instruments all the aforementioned cam-
era APIs on a custom ROM, dynamically triggers the face
verification process, and automatically finds out which camera
APIs are invoked. If this method fails due to ROM detection
or other reasons, we manually inspect their code to determine
how the XFVS apps get the camera data. The scores for SP2
are given based on how they use the above methods to ensure
camera security.

3) Evaluating Liveness (SP3): XFVSCHECKER then
checks how XFVS apps ensure reliable liveness detection.
After studying the documentation of XFVS SDKs, reverse-
engineering real-world apps, and referring to existing stud-
ies [11], we classify existing liveness detection into the fol-
lowing security levels:

• Silent liveness detection, where no actions are required
and the texture and depth information of human faces
are captured for detection.

• Action-based liveness detection, where some fixed pat-
terns of actions are required, such as closing eyes, shaking
heads and opening mouths. This level also includes
reflection-based liveness, where the screen emits different
colors of light and the reflection of the human faces is
captured for detection.

• Randomized interactive liveness detection, where users
are randomly instructed to perform certain actions in a
given time, such as reading random texts or numbers.

In this step, we manually test the liveness detection of the
target app and can directly observe which type the client side
uses. The server-side liveness check is invisible to us and we
evaluate it using black-box testing, as done in prior work [11].
More specifically, we manually reverse-engineer the XFVS
apps to locate APIs that send face data to the server, and then
we change the face data that are inputted into these APIs. By
uploading videos of different levels and observing the results
returned by the server whether they pass or not, we can infer
the type of server-side liveness detection. For example, we
can upload a still video to see if the server uses silent or
action-based liveness detection. Note that the still video is
synthesized by repeating one image of the victim, changing
one bit per frame to avoid having the same checksum value and
being detected by the server. We give a score to each XFVS
app based on the strength of the client-side and server-side
liveness detection.

4) Checking Data Consistency (SP4): Finally,
XFVSCHECKER checks whether the data are consistent
throughout all steps and between the client and server.
Specifically, the following data are considered: 1) Face data,
including the images and videos of the person to be verified;
2) Liveness configurations, sent by the server to the client to
configure which type of liveness detection should be used; 3)
Validation results, sent from the client to the server, including
whether local environment is reliable and whether the local
liveness detection is passed.

XFVS apps may adopt multiple methods to ensure data
consistency. For instance, XFVS apps can compute checksums
for each validation result using MD5, or more secure hashing
algorithm such as HMAC, or using PKI-based signature. They
can also apply watermarks to each face image and video
after the local liveness detection to prevent data tampering.
Most importantly, rather than relying on the client’s results,
the XFVS server should carefully check the data consistency
independently. XFVSCHECKER gives a score based on how
well data consistency is guaranteed (more details in Table IX).

V. XFVS EVALUATION RESULTS

In this section, we present the security analysis results on
real-world XFVS apps. First we describe the overall results
on representative apps of top SDKs. Then we propose four
typical attack types with real-world case studies. After that,
we summarize the possible consequences of these attacks and
demonstrate the difficulties to prevent these attacks.

A. Overall Result

We apply our testing framework to evaluate the security of
top SDKs listed in Table IV. Since an SDK cannot be used
alone, we choose representative apps for each SDK. We fail
to find representative apps for two SDKs, namely “Linkface”
and “Daon” in Table IV, because their apps require additional
permissions that we do not have, such as membership of
certain companies. We analyzed over 80 apps in total with
at least three apps per SDK, and all the analyzed apps are
vulnerable to at least one attack described below. Finally, we
select 12 representative apps for 12 different top SDKs. These
representative apps are all well-known and popular ones, and
some of them even have been downloaded billions of times.

The evaluation result is shown in Table VII, which reveals
that security properties are not well satisfied in real-world
XFVS apps, even top ones. We come up with the following
observations:

• It is very difficult for XFVS apps to guarantee the reli-
ability of their running environment (SP1). Our security
experts can bypass their environment detection methods
in various ways. For example, a well-crafted custom
ROM with modified camera APIs and networking APIs
can evade the detection of all the tested apps.

• Most of the tested apps simply use framework-level
camera APIs such as onPreviewFrame and takePicture,
which can be easily hijacked under the circumstance that
SP1 is not satisfied.

• For SP3, many apps only use actions of fixed patterns,
even silent liveness detection, allowing attackers to syn-
thesize a compliant video from a single image of the
victim.

• In terms of SP4, about half of the apps have no mech-
anisms to ensure data consistency, such as validating
checksums for the uploaded face data on the server side.

Note that these scores only reflect the corresponding ver-
sions of these apps at the time we downloaded the dataset
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TABLE VII
The Overall Evaluation Results on Top XFVS SDKs and Their Representative Apps (at the Time of May 2021). Note that “AT2&3&4” Means the Attack is

a Combination of AT2, AT3 and AT4, While “AT2,3,4” Means Any One of AT2, AT3, AT4 Can Be Launched.

No. App Name Package Name Version Downloads SDK Security Protection Attacks Reported FixedSP1 SP2 SP3 SP4
1 Taobao com.taobao.taobao 10.0.0 4.8B Alibaba ⋆ ⋆ ⋆ ⋆⋆⋆ AT3 ✔ ✔

2 WeChat com.tencent.mm 8.0.6 4.3B Webank ⋆ ⋆ ⋆⋆⋆ ⋆⋆⋆ AT2&3&4 ✔ ✔

3 Baidu com.baidu.searchbox 12.23.5.10 3.6B Baidu ⋆⋆ ⋆ ⋆⋆ ⋆ AT2,3 ✔ ✔

4 Alipay com.eg.android.AlipayGphone 10.2.13.9020 2.6B ZOLOZ ⋆ ⋆ ⋆⋆ ⋆⋆ AT2,3,4 ✔ ✔

5 ZheLiBan com.hanweb.android.zhejiang.activity 6.17.0 5.9M SenseTime ⋆⋆ ⋆ ⋆ ⋆ AT2,3 ✔ ✔

6 Antifraud com.hicorenational.antifraud 1.1.20 43M CloudWalk ⋆ ⋆ ⋆⋆ ⋆ AT2,3,4 ✔ ✔

7 China Unicom com.sinovatech.unicom.ui 9.0.1 489M Megvii ⋆ ⋆ ⋆⋆ ⋆ AT2,3,4 ✔ ✔

8 Pingan Jinguanjia com.pingan.lifeinsurance 8.02.00 269M PingAn ⋆⋆ ⋆ ⋆⋆ ⋆⋆ AT3 ✔ ✔

9 PuHuiDaoJia com.baoli.blzj 6.3.7 8.4M YITU ⋆⋆ ⋆ ⋆ ⋆⋆ AT2,3 ✔ ✔

10 ZenGo com.zengo.wallet 3.2.2 100K FaceTec ⋆ ⋆⋆ ⋆⋆ ⋆⋆ AT3 ✔ ✔

11 Jumio Showcase com.jumio.demo.netverify 4.0.0 10K Jumio ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ AT3 ✔ ✔

12 USAA Mobile com.usaa.mobile.android.usaa 10.8.1 5M Daon ⋆ ⋆ ⋆ ⋆ AT1,2,3 ✔ ✔

(May 2021), while XFVS security has been significantly
enhanced in the recent versions of these apps, as discussed
in §VI-B.

B. Typical Attacks & Case Studies

As the security properties are not well met, XFVS apps face
a variety of attacks. In this subsection, we study four typical
types of attacks, through which attackers can easily cheat or
bypass face verification in XFVS apps. The apps in Table VII
were vulnerable to at least one of the four attacks, and we
have included a demo video for each app here2.

Note that in contrast to previous attacks [4], [3], [10],
[11] against face-related AI models (AI perspective), the root
cause of these attacks is the failure of the studied SDKs to
meet security properties from the system perspective. More
importantly, since the studied SDKs are vulnerable, any XFVS
apps relying on the SDKs are vulnerable. Fig. 7 depicts how
the four types of attacks work and the steps targeted in the
XFVS workflow. We discuss the details of each attack with a
real-world case study below.

1e. config client model

 4a. request verifying user A 
with face info & liveness result

3b. local  
liveness  
check

Client
Model

Client
Code

Server

2. get face info from cameraAT4

AT1 AT2

 

 

AT3

Fig. 7. Four Typical Attacks on XFVS Apps.

AT1: Liveness Bypassing Attack. This attack targets step
3b in the workflow, and apps that violate SP1, SP3 and SP4

2 https://www.youtube.com/playlist?list=PLecyq8GEUCfmBX2xc-xml1h
7LRU04lQVP

are vulnerable to this attack. The root cause is that the XFVS
app lacks reliable environment checks to protect the integrity
of client code (SP1), allowing attackers to modify client
logic by hooking or repackaging, to completely skip local
liveness detection. After that, if there are no data consistency
requirements on the face data between local liveness detection
and data uploading (SP4), then the attacker can replace the
uploaded data with the face data of the victim, which may
be obtained from social media. Finally, if the face data can
pass the server-side liveness check (SP3), the attacker will be
verified as the victim. In most cases, attackers only need the
victim’s account ID, such as phone number, email address, or
social ID number, and one photo of the victim to launch such
an attack.

Case1: USAA. The USAA mobile app is developed by the
United Services Automobile Association to provide services
on finance and insurance for its members, which has been
downloaded more than 5M times on Google Play. To secure
users’ accounts, it asks users to scan their faces each time the
app starts. It adopts action-based liveness detection, i.e., asking
users to blink their eyes, on the client side but no liveness
detection on the server side. However, because it lacks basic
environment detection, the integrity of its client code cannot
be guaranteed. An attacker can hook the client code and skip
local liveness detection, and then send one image of the victim
to the server to be verified as the victim.

AT2: AB Attack. This attack targets step 4a in the work-
flow, and apps that violate SP1, SP3 and SP4 are vulnerable
to this attack. Compared to AT1, the XFVS apps may adopt
strong protections on local liveness, so that it is difficult for
an attacker to directly skip the local liveness check. However,
the attacker (say A) can stand in front of the camera to finish
the local liveness detection by him/herself, then upload the
face data of the victim (say B), and the identity of B will be
verified by the server. In this attack scenario, the apps lack
adequate data consistency check (SP4), resulting in the face
data being replaced by the attacker when they are uploaded to
the server. This can be done by injecting manipulating code
to the client (SP1), or modifying communication data with a
man-in-the-middle (MITM) attack (SP4). Again, if the XFVS
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server adopts no liveness detection or weak liveness detection
(SP3), this attack can be launched by obtaining one face image
of the victim. 8 out of 12 apps in Table VII are vulnerable to
this attack.

Case2: Pingan Jinguanjia. Pingan Jinguanjia is one of
the most popular insurance apps in China, which has been
downloaded more than 269M times in XiaoMi App Market. It
requires users to verify their identities using an XFVS before
they can buy insurance products. The local liveness detection
in this app is highly effective, which requires users to do
actions according to random instructions. However, its server-
side liveness detection is weak, only requiring one image of the
user’s face for silent liveness detection. Furthermore, the face
data uploaded to the server are not well protected to ensure
they are consistent with the client. Therefore, an attacker can
launch the AB attack on this app and use one face image to
impersonate the victim.

AT3: Camera Hijacking Attack. This attack targets step 2
in the workflow, and apps that violate SP2, SP3, and optional
SP1 are vulnerable to this attack. As currently most mobile
devices do not use hardware-level secure cameras and the
client side of XFVS does not run in a trusted environment,
the data from the camera can be modified by the attacker. An
attacker can hijack the camera APIs by hooking the process
or using a custom ROM, or even modify the camera hardware
to inject a prepared video of the victim. In this case, the
prepared video must pass liveness detection both on the client
side and the server side, and also the face verification on
the server side, thus this attack is essentially a face spoofing
attack [11] on both client-side and server-side AI models.
This proposes a higher demand on the attacker’s capability to
generate high-quality videos, thus video synthesis techniques,
especially deepfake methods [67], [68], [11] are used here. In
theory, all apps in Table VII are vulnerable to this attack, if
adequate videos can be generated.

Case3: ZenGo. ZenGo is a popular cryptocurrency wallet
app, which has more than 100K downloads on Google Play
and uses an XFVS to verify users’ identities when they log in.
ZenGo has deployed various methods to protect the security of
its data, for instance, it encrypts and checks the data uploaded
to the server so that AT1 and AT2 are difficult to be launched.
However, the usage of camera APIs is not well protected, and
an attacker can hijack the camera to inject a video of the
victim. More specifically, as its server asks the user to take
pictures from different distances, the attacker can mimic this
change in distance by zooming in and out of the victim’s still
image to synthesize a video.

AT4: Downgrade Attack. This attack targets step 1e in
the workflow, and apps that violate SP4, SP3, and optional
SP1 are vulnerable to this attack. The root cause of this
attack is that the liveness configurations are not consistent
between the client and the server (SP4), and an attacker can
modify the configurations by hooking the client-side code
(SP1) or MITM attack (SP4). As a result, the liveness detection
strength on the client side can be downgraded, for example,
by changing from randomized interactive liveness detection to

silent liveness detection. This attack must be combined with
the former attacks to finally work. 4 apps in Table VII are
vulnerable to this attack.

Case4: Alipay. Alipay is the most popular payment app
in China, being downloaded more than 4 billion times in
XiaoMi App Market. It is widely used by people for shopping,
investment, business remittance, etc, and it allows users to log
in with their faces using an XFVS. Alipay adopts randomized
interactive liveness detection, computes checksums of face
images in encrypted native code, and checks them on the
server side, posing great difficulty for attackers to launch
previous attacks. However, there’s an optional silent mode at
the initialization of liveness detection, which would never be
triggered in the normal authentication process. The problem
here is that the XFVS server does not ensure that this mode
cannot be used on the client side. Therefore, attackers can
modify this configuration to downgrade to silent liveness
detection, and then AT2 & AT3 can be launched.

We can see that the threshold for attackers to launch these
attacks is relatively low. Except for AT3 that may require more
than one photo or even a video, attackers only need one photo
of the victim and his/her account ID to launch AT1, AT2 and
AT4 in most cases.

C. Attack Consequences

As the above case studies have shown, XFVSes are often
used for user authentication and authorization in mobile apps,
as they provide the ability to remotely validate the user’s
claimed identity. Therefore, if XFVSes are compromised,
potentially catastrophic consequences can occur. We study top
XFVS SDKs and apps to summarize the consequences of these
attacks.

Direct Impacts to Vulnerable Apps. Depending on how
mobile apps use XFVSes, attacks on them may bring various
types of security consequences, as listed below:

• Complete Account Takeover. Some apps may allow users
to use XFVSes to directly log in to their accounts, or
recall their forgotten login passwords. In such cases, at-
tackers can use the vulnerabilities of XFVSes and one or
more images of the users, to fully control their accounts.
A typical example is “Taobao” (the 1st one in Table VII),
one of the most popular shopping apps in China, which
allows users to turn on the option of face login. If users
do so, they can log in to their accounts by their faces
on any device without additional verification. Therefore,
attackers can attack the XFVSes to gain full control of the
victims’ accounts, viewing sensitive information such as
shopping history and delivery address, and even placing
orders if the victims enabled password-free payment.

• Identity Fraud. Some apps provide services according to
the users’ real identities. For instance, loaning apps must
issue loans to the exact individual. In such cases, attackers
can first register with the victim’s name, then attack the
XFVSes to be verified as the victim, and finally, they can
take out loans in the victim’s identity. This also applies
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to some driving apps, training apps, and insurance apps
in our dataset.

• Financial Loss. There are many apps with payment
functions that require users to set a “payment password”.
If this password can be modified by cross-side face
verification, then it may be attacked by the above attacks.
For example, attackers can first use the victim’s face data
to log in to the account, and then attack the XFVS again
to change the victim’s payment password. In such cases,
for example Case4: Alipay, the attackers can take all the
victim’s money.

Indirect Impacts on the Ecosystem. Due to the use of
OAuth and sub-apps, these attacks may also have a wider
range of indirect effects in addition to direct impacts on the
vulnerable apps. As an illustration, several apps in Table VII,
including Taobao, Baidu, and Alipay, offer OAuth login for
other apps. These apps are also “super-apps”, allowing other
“sub-apps” to run on top of them. According to a prior
study [69], WeChat has more than 3.8 million sub-apps,
whereas Alipay has more than 2 million. As a result, if they
are compromised, attackers may use them to attack other apps
and sub-apps, posing further risks.

D. Patch Challenges

We use a real-world case to show how challenging for de-
velopers to directly patch/fix the security problems of XFVSes.

WeChat is one of the most popular apps in China, which
covers many aspects of people’s lives, including social, pay-
ment, finance, entertainment, and so on, thus carrying a large
number of highly sensitive user data. Furthermore, it also
serves as a super-app [70], where millions of sub-apps [69]
provide different services to users. WeChat uses an XFVS
to verify users’ identities, which is invoked when users do
sensitive operations such as binding a bank card in WeChat,
or when a sub-app asks WeChat to verify users’ identities.

Originally, the XFVS in WeChat uses a combination of
action-based liveness detection and reflection-based liveness
on the client side, but the server-side liveness detection is
weak so we can launch AT2: AB attack on WeChat. Note that
WeChat calculates a checksum for each image with a fixed
hashing function, thus we can actively invoke this function by
AT3: Camera Hijacking Attack to get the checksums for our
replaced images.

After we report this vulnerability to CNVD, the WeChat
team strengthened the verification by ensuring the consistency
of uploaded data. Specifically, the client side will upload a
video when doing a client liveness check and the server will
make sure that both the video and uploaded images have the
same face.

However, we find that the video is used only for data
consistency check but not for server-side liveness detection,
so the second round of attack is straightforward. We use one
image of the victim to generate a video and upload it to the
server, and pass the server-side protection.

After our second round of attack, the WeChat team then
deployed a strong liveness check on the server side, i.e. using
randomized reflection-based liveness detection. This defense
can prevent our attack, but it introduces extremely high server-
side costs because AI models have to be invoked for liveness
detection, especially given the fact that WeChat verification
APIs are heavily used by many users in WeChat itself and
lots of sub-apps.

In such case, we find that AT4: Downgrade Attack can be
used to modify the configures for AI models. Specifically, we
find that the randomness of reflection-based liveness can be
reduced, and we can specify a fixed pattern of reflection colors.
Therefore, we pre-processed the face images of the victim with
a fixed sequence of different colors using graphic processing
techniques, and then send them to the server and pass the
verification.

After receiving this attack, the WeChat team further
strengthened the server-side liveness detection, and also
adopted other risk assessment methods to avoid the reduction
of randomness and abnormal invocation of the verification
systems. At this point, we find that it is very hard for attackers
to launch the above attacks. However, as WeChat still runs on
the untrusted mobile device, in theory, the XFVS in WeChat
can be attacked, for example, using hardware-level camera
hijacking with well-crafted videos of the victim.

VI. LESSONS LEARNED & MITIGATION

We discuss the lessons learned from the XFVS security
analysis and possible mitigation in this section.

A. Lessons Learned

We have learned the following lessons from the above
security analysis of XFVS apps:

• Security of AI Systems vs. AI Models. When AI techniques
are deployed in real-world applications, its security is
a systematic issue that includes not only the security
of machine learning models, but also the security of
the software, operating system, and hardware that make
up the whole AI system. In the case of FVS security,
attention should be paid to the design of the whole
system, in addition to the security of AI models.

• Wooden Barrel Theory. The security of a system com-
posed of multiple modules requires consideration of con-
fidentiality, integrity, and availability within and between
each module, while the security level of the entire system
depends on the weakest link. For XFVSes, while the
attacking bar for AI models is becoming higher, the
system design and implementation need better protection.

• Consideration of Worst-case Assumptions. As our analy-
sis and attacks have shown, attackers may use a variety of
methods to attack an XFVS. Therefore, developers need
to make the worst-case assumptions and ensure that all
security properties are well met in XFVSes.
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B. Mitigation

Based on our security analysis and the lessons learned,
possible mitigation to the above XFVS attacks is discussed
below.

1. Satisfying all security properties. The fundamental so-
lution is to ensure that all security properties (SP1 to SP4)
are well satisfied. First, processes of XFVSes and the cameras
should be placed in a trusted environment, such as using secure
cameras [66] to capture face data, using TEE to process the
data on the client side, and sending them to the server within
secured network channels. Furthermore, the server side should
apply strong liveness detection, even manual verification, to
prevent presentation attacks, where attackers show a video of
victims on a screen or wearing 3D masks. However, providing
a fully trusted environment across the client side and server
side will introduce significant costs, and currently, most mobile
devices do not support such a trusted environment. Besides,
reliable liveness detection faces continuous challenges of AI
perspective attacks [11].

2. Using PKI with Local FVSes. A potential alternative to
XFVSes is using PKI-based Local FVS, such as the FIDO2
protocol [71]. FIDO2 relies on the underlying mobile device
to provide secure local FVS [1], [20], [19]. It generates a pair
of asymmetric keys and sends the public key to the app server
when binding the user’s account. The private key is saved in
the TEE of the local device and can be used to encrypt data
each time a successful local face verification is finished. In this
way, it can allow users to log in to the app using their faces.
However, this method has the following shortcomings: 1) It
relies on the security of local FVS, which also faces the threat
of presentation attacks. 2) The app server cannot get the face
data of the users, which may not meet the app’s requirements,
for example, some bank apps need to view the faces of users.
3) The local FVS is bound with the devices where users bind
their accounts, which may affect the flexibility of usage. 4)
FIDO2 requires hardware and system support, and can only
run on high versions of Android [72]. Nevertheless, using
FIDO2 can achieve the same function for the app servers in
most cases and is recommended by this paper.

3. Enhancing XFVSes. Although it is hard to fully satisfy
all security properties, some methods can be adopted to
enhance current XFVSes. The XFVS apps can use more
robust environment-checking tools, increase the randomness of
liveness detection patterns, and add more checks to ensure data
consistency. According to our interactions with the developers,
techniques listed in §IV-C can significantly raise the bar for
attackers.

4. Protecting XFVSes. Another idea is to protect XFVSes
by filtering out abnormal requests. To do so, the app server
can use device fingerprinting methods to only allow users to
use XFVS on a few trusted devices, and also it can check
the IP address of the request and the behavior history of the
users. For example, if a user tries to use an XFVS in two
distinct physical locations within a very short period of time,

then these requests may be problematic.
5. Using multi-factor authentication (MFA). The next pos-

sible mitigation is to use MFA in sensitive operations instead
of using only an XFVS as the single factor. For example, if
users want to change their payment passwords, they should
provide more proof, such as an SMS code, etc.

After we report the vulnerabilities, most apps choose a
combination of methods 3, 4, and 5 to secure their XFVSes.
Methods 1 and 2 are seldom applied because they are restricted
to certain usage scenarios discussed above.

VII. DISCUSSION

Responsibly Disclosure. Our research began in early 2021,
and the first vulnerability was discovered in May. We have
actively contacted the SDK and app vendors since then to fix
the vulnerability. In order to improve the efficiency of repair,
we also reported the vulnerabilities of apps in China to CNVD,
who coordinated the vendors for emergency fixes. However,
as shown by this paper (§V-D), it is very challenging for
developers to fully fix this vulnerability. Therefore, it takes
a very long time before these vulnerabilities can be fixed.
We have been actively involved in this process, providing fix
suggestions and performing retests. As a result, we acquire 14
CNVD IDs (detail listed in Table VIII in Appendix), and one
of them (CNVD-2021-86899) is awarded by CNVD the most
valuable vulnerability in 2021.

At the time of writing this paper, the vulnerabilities in the
apps mentioned in this paper have been well fixed, by methods
discussed in §VI-B. The disclosure of this paper will not result
in these apps being attacked due to the details discussed in this
manuscript or in our demo videos.

Ethics. We take the following measures to make sure that
our research does not bring any ethical issues:

• All of our attacks are tested on our own devices with
our test accounts, which do not harm any other users or
accounts.

• Our tests do not put traffic and computational pressure,
or bring any negative effects to the app servers.

• We have been in close contact with app vendors regarding
vulnerability details and mitigation suggestions. Alibaba,
Baidu, and Facetec have therefore invited us for retesting
with licenses.

• All of our researchers are fully aware of the potential risks
and they do not disclose any details of the vulnerabilities
to any other parties before the vulnerabilities are fixed.

XFVSes on iOS. This paper uses the Android apps as a
demonstration, while the same security problem also affects
other platforms such as iOS. First, XFVSes in iOS devices
also run in untrusted environments, which can also be tam-
pered [53]. Second, although the TrueDepth cameras on iOS
devices can capture more accurate face data, it is not used in
XFVSes. And most importantly, the attacks on XFVSes do not
require access to the victim’s device. In other words, attackers
can launch the attacks on their own devices, e.g. a customized
Android device.
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Local FVSes and Remote FVSes. In this paper, we focus
on the security of XFVSes, but the same idea may also apply
to local FVSes and remote FVSes, if the proposed security
properties are violated. For instance, if data consistency is
not strictly guaranteed, attackers can also launch AB Attack
to remote FVSes such as those deployed at border gates [2],
e.g. by replacing the face image to be matched through MITM
attacks between the border gate cameras and the servers.

VIII. RELATED WORK

The security of face recognition (including face verification,
face identification, face detection, etc.) systems has received
much research attention, especially from the AI perspective.

Presentation Attacks. Presentation attacks, in which vic-
tims’ faces are presented in different mediums (e.g. A4 papers,
screens, 3D models), can be used to spoof the face verification
systems. Y Li et al. [6] notice that public photos on social
media can be used in presentation attacks, and present these
social media photos on the LCD screen to bypass the face
verification system. While Y Xu et al. [3] build 3D models of
victims based on social media photos and conduct a VR-based
spoofing attack. 3D masks are also used by N Erdogmus et
al. [4], and they find that fraud detection capabilities of face
verification systems mainly shape around 2D attacks. Kose et
al. [5] present a study of 3D-mask attacks on two different
FR methods, one using 3D data and the other using local
binary patterns-based face-image comparison, and they found
that both are vulnerable to mask attacks.

Adversarial Attacks. Some work [7], [8], [9], [10], [73],
[74] conduct adversarial attacks on face identification systems.
Y Dong et al. [73] evaluate the robustness of state-of-the-art
face recognition models and propose a decision-based black-
box attack that applies minimum perturbation to an input
face image to cheat the models with fewer queries. M Sharif
et al. [9] put adversarial patches on glasses to avoid face
detection or disguise as other people. S Shan et al. [10]
apply pixel-level patches to photos uploaded on social media,
to avoid users from being recognized by unauthorized face
identification systems. E Wenger et al. [7] investigate the
current situation of anti-facial recognition tools. Z Deng et
al. [75] conduct systematic research on adversarial sample
attacks of DNN models in real-world apps.

Deepfake Attacks. Deepfake technology has also been used
by several works [76], [11], [77], [67], [68] to attack face
recognition systems. Unlike adversarial attacks, deepfake aims
to generate faces that are difficult to identify with human
eyes. P Korshunov et al. [76] show that the state-of-the-
art face recognition systems based on VGG and Facenet
neural networks are vulnerable to deepfake videos. O Wiles
et al. [67], E Zakharov et al. [68] generate synthetic faces
based on the pose and expression of the driving image. S
Tripathy et al. [77] provide an interpretable and controllable
face reenactment network to control the pose and expression
of a given face image with human-interpretable signals (e.g.,
head pose angle). In summary, with only one target face image

and a deepfake model, attackers can generate target faces with
arbitrary poses and expressions, thus evading action-based
liveness detection mechanism.

The work that is closest to our study is LiveBugger [11],
which tests the ability of deepfake models to bypass existing
server-side liveness detection models. LiveBugger finds that
most XFVS servers do not use anti-deepfake detection and are
therefore vulnerable to deefake attacks. However, LiveBugger
only focuses on the server-side AI models from an ML per-
spective, while our work study the security of all components
in XFVSes from a system perspective. More specifically, the
attacks discussed in LiveBugger can be seen as a special form
of AT3: Camera Hijacking Attack, where the attackers do not
consider local checks, but only need to bypass server-side
liveness detection.

Counter Measures for AI models. Many researches [51],
[13], [15], [12], [50], [14], [78], [79] have been conducted to
defend against the attacks on AI models. J Määttä et al. [50],
[51] present texture analysis methods to detect face anti-
spoofing. D Wen et al. [14] provide a face spoof detection
algorithm based on image distortion analysis. Y Li et al. [13]
use the accelerometer and gyroscope with the camera for
liveness verification to prevent fake video attacks. D Tang et
al. [15] believe that motion liveness gives the attacker too
much reaction time, so they propose to use flash to eliminate
this gap. Z Ming et al. [12] point out that there is a gap
between face recognition and liveness detection that may lead
to an attack window, and propose a scheme for doing both at
the same time. These works can help improve the robustness of
liveness detection, helping XFVS apps to satisfy SP3: Reliable
Liveness, therefore they may be used on the server side of
XFVSes to enhance their security.

Mobile App Security. As a countermeasure to risky en-
vironments, app integrity detection has been a heated topic
of security works [80], [81], [82], [83], [84], [85], [86], [87].
T Vidas et al. [81] present techniques for detecting Android
runtime analysis systems, demonstrating that malware may
evade analysis in the same way. M Backes et al. [82] focus
on Android libraries and quantify the security impact of third-
party libraries on the Android ecosystem. K Lim et al. [84]
propose a detection scheme against dynamic reverse engineer-
ing attacks. A Merlo et al. [83] look into the repackaging and
anti-repackaging techniques, and summarize attack vectors and
state-of-the-art anti-repackaging schemes.

Research [54] is relevant to our work. They utilize MASTG
to evaluate the resiliency of 455 popular financial apps, and
find that they lack sufficient protection. This confirms our
observation that it is extremely challenging for mobile apps
to meet SP1. Reliable Environment. Also, S Sun et al. [81]
conduct experiments on the validity of root detection in 182
apps and conclude that reliable methods for detecting rooting
must come from integrity-protected kernels. This underscores
the need for trusted hardware to provide secure XFVSes.
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IX. CONCLUSION

In this paper, we present the first comprehensive analysis on
the security of cross-side face verification systems (XFVSes)
from the system perspective. We propose XFVSCHECKER,
a semi-automated framework for analyzing the security of
XFVSes by inspecting four security properties. We collect
43,422 Android apps from Google Play and Xiaomi App
Market, locate XFVS apps in them, and evaluate their security.
The result reveals that real-world XFVSes, including those
adopted by top apps, are under significant security threats.
We propose four typical attacks against top XFVS SDKs and
apps, and responsibly report the security issues and mitigation
suggestions to related vendors, rewarded with 14 CNVD IDs.
We hope our study can shed light on this security issue and
promote the security of XFVSes.
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APPENDIX A
MANUALLY REVERSE-ENGINEERING APPS

To evaluate the security of XFVSes, we have two security
experts manually reverse engineer the apps to assess how they
meet the proposed security properties. To demonstrate how our
experts work and to understand the difficulty of establishing
a reliable environment (SP1) for the apps, we showcase the
details of the two apps below.

Main ProcessforkDaemon
Process Login Process fork Daemon

Processfork

ptrace ptrace

(a) Environment Protection of X.

App Y

Root Detection Signature CheckROM Check

Weak

(b) Environment Protection of Y.

Fig. 8. Two Examples of Incomplete SP1 Protection.

Case1: Commercial Bank App M. The first example is a
commercial bank app. It creates new processes when accessing
highly sensitive operations (e.g., the Login Process shown in
Fig. 8(a)), and each worker process forks a daemon process to
ptrace itself to prevent debugging. Meanwhile, once the worker
process detects that its daemon process has terminated, it will
also terminate immediately. This effectively prevents attackers
from injecting code into the process using Frida. However,
we find that this app lacks runtime environment checks, so
we can directly patch the .so file to replace the ptrace-related
code with the nop instructions. Then we can attach Frida to the
target process, and then control its execution code and data.

Case2: Government Affair App N. The second example
is a government-related app, which is launched with strong
detection of custom ROM and root privilege, and its code
is heavily obfuscated, thus it is difficult to locate or modify
them. However, we find that this app lacks sufficient signature
checks, therefore can not guarantee the integrity of its own
code. We inject Frida-Gadget into its APK file by repackaging,
and then we can use Frida to hook it without root privilege.

The above examples show that although XFVS apps may
employ a variety of defensive measures, it is difficult to
fundamentally eliminate attacks by local attackers.

APPENDIX B
DETECTING XFVS APPS

We describe more details to detect XFVS apps here, as
shown in Algorithm 1. To find the XFVS code, for the set S
of all Java fully qualified class names and native JNI method
names in an app, we compute the set P of prefixes of length
2 for all strings in S. We group strings with the same prefix
in S according to each prefix p in P . We prepare a set

K of keywords related to face verification in advance and
calculate the Proportion of strings with keywords in set K
in each group separately. This Proportion represents the face
verification semantics cohesion of the code, and if the value
exceeds the threshold θ, the group is considered as XFVS
code. Therefore, the prefix p of the group is added to the
result set R. Otherwise, we check the semantics cohesion of
groups with longer prefixes (Len + 1).

Algorithm 1 Face Verification Code Clustering
Input: Java class names and native function names S, face

and verification keywords K; semantics cohesion thresh-
old θ.

1: ResultSet R = ∅ , PrefixSet P = getAllPrefix(S, Len=2)
2: for p in P do
3: All = getAllStringsWithPrifix(S, p)
4: Matched = getAllStringsHasKeywords(All, K)
5: Proportion = |Matched| / |All|
6: if Proportion ≥ θ then
7: Add p to R
8: else
9: P ′ = getAllPrefix(All, Len+1)

10: Add all item of P ′ to P
11: Return R

APPENDIX C
VULNERABILITY REPORT

We receive 14 CNVD IDs, as listed in Table VIII. Note
these CNVDs are confidential for 10 years.

TABLE VIII
Accepted CNVD IDs.

Certificate NO. State Fixed Date

CNVD-2022-74482 Accepted & Fixed 2022-09-21
CNVD-2022-74483 Accepted & Fixed 2022-09-21
CNVD-2022-74484 Accepted & Fixed 2022-09-21
CNVD-2022-61291 Accepted & Fixed 2022-08-03
CNVD-2022-61293 Accepted & Fixed 2022-08-03
CNVD-2022-54088 Accepted & Fixed 2022-06-29
CNVD-2022-43391 Accepted & Fixed 2022-05-05
CNVD-2022-41381 Accepted & Fixed 2022-04-19
CNVD-2022-21775 Accepted & Fixed 2022-03-02
CNVD-2022-25891 Accepted & Fixed 2022-02-28
CNVD-2022-25895 Accepted & Fixed 2022-02-24
CNVD-2022-25896 Accepted & Fixed 2022-02-24
CNVD-2021-86899 Accepted & Fixed 2021-11-12
CNVD-2021-86898 Accepted & Fixed 2021-11-12

APPENDIX D
SCORING RULES

To ensure the objectivity and accuracy of the evaluation
results, we have established strict scoring rules for each
security property, as listed below.
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TABLE IX
The Scoring Rules for Evaluating How XFVS Apps Meet the Four Security Properties.

SPs Score Scoring Rules

SP1:
Reliable
Environment

⋆ The app checks no resiliency items in Table 6.
⋆ The app checks one resiliency item in Table 6.
⋆⋆ The app checks two resiliency items in Table 6.
⋆⋆ The app checks three resiliency items in Table 6.
⋆⋆⋆ The app checks four resiliency items in Table 6.
⋆⋆⋆ The app checks five resiliency items in Table 6.

SP2:
Camera
Security

⋆ The app uses framework (Java) camera APIs to get images/videos with no protection.
⋆ The app uses native (C/C++) camera APIs to get images/videos with no protection.

⋆⋆
The app uses framework (Java) camera APIs to get images/videos with protection methods, including
validating frames from both front and back cameras, and getting images of different resolutions to prevent
camera injection.

⋆⋆
The app uses native (C/C++) camera APIs to get images/videos with protection methods, including
validating frames from both front and back cameras and getting images of different resolutions to prevent
camera injection.

⋆⋆⋆
The app uses framework or native camera APIs but obtains images/videos by recording the screen to
avoid direct camera injection.

⋆⋆⋆ The app uses secure camera to get images/videos.

SP3:
Reliable
Liveness

⋆
The app only uses silent liveness detection on the client side, with no liveness detection on the server
side.

⋆
The app uses action-based/reflection-based liveness detection with fixed action/flash sequences on the
client side, with no liveness detection on the server side.

⋆⋆
The app uses action-based/reflection-based liveness detection with fixed action/flash sequences on the
client side, with silent liveness detection on the server side.

⋆⋆
The app uses action-based/reflection-based liveness detection with random action/flash sequences on the
client side, with silent liveness detection on the server side.

⋆⋆⋆
The app uses action-based/reflection-based liveness detection with random action/flash sequences on the
client side, with action-based/reflection-based liveness detection on the server side.

⋆⋆⋆
The app uses randomized interactive liveness detection on client side, and also server-side liveness
detection that cannot be bypassed by our black-box testing.

SP4:
Data
Consistency

⋆ The app does not validate data consistency.

⋆
The app checks data consistency by calculating a hash, e.g. MD5, for the transmitted data (face data,
liveness configurations, and validation results).

⋆⋆
The app checks data consistency by calculating a secure hash, e.g. HMAC, for the transmitted data (face
data, liveness configurations, and validation results).

⋆⋆
The app checks data consistency by calculating a PKI-based signature for the transmitted data (face data,
liveness configurations, and validation results).

⋆⋆⋆
Besides the above methods, the app also deploys image-based validation methods, such as using a
watermark for each image to prevent it from being tampered with by attackers.

⋆⋆⋆
Besides the above methods, the app server checks the consistency of all data it sends, instead of relying
on the client’s checking results.
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