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Abstract
Zero-rating services provide users with free access

to contracted or a�liated Content Providers (CPs), but
also incur new types of free-riding a�acks. Speci�cally,
a malicious user can masquerade a zero-rating CP or
alter an existing zero-rating communication to evade
charges enforced by the Internet Service Provider (ISP).
According to our study, major commercial ISPs, such as
T-Mobile, ChinaMobile, Boingo airportWiFi andUnited
cabinWiFi, are all vulnerable to such free-riding a�acks.
In this paper, we propose a secure, backward compat-

ible, zero-rating framework, called ZF���, which only
allows network tra�c authorized by the correct CP to be
zero-rated. We perform a formal security analysis using
ProVerif, and the results show that ZF��� is secure, i.e.,
preserving both packet integrity and CP server authen-
ticity.
We have implemented an open-source prototype of

ZF��� available at this repository (h�ps://github.com/
zfree2018/ZFREE). A working demo is at this link
(h�p://zfree.org/). Our evaluation shows that ZF��� is
lightweight, scalable and secure.

1 Introduction
Internet service providers (ISPs) o�en provide so-called
zero-rating services, in addition to the normal charged
ones, for contracted or a�liated content providers (CPs)
to either a�ract more users or shi� the payment respon-
sibility from users to corresponding CPs. For example,
T-Mobile provides a program called BingeOn with over
one hundred CPs, such as Youtube, so that T-Mobile
users can access free services provided by these CPs,
e.g., watching Youtube videos. United Airline also al-
lows passengers to access United.com and its partners’
websites without paying fees over cabin WiFi.
Although zero-rating services provide convenience

for both users and CPs, a�ackers—i.e., malicious users
in our threat model—can launch so-called free-riding
a�acks to bypass the pre-set zero-rating policies and

visit normal websites beyond zero-rating services for
free. Such free-riding a�acks involve three parties, i.e.,
the user, the ISP, and the CP. �e threat model is dif-
ferent from traditional two-party a�acks which exploit
ISP-side charging bugs via uncharged protocols such as
network domain service (DNS) and TCP retransmission.
Speci�cally, Kakhki et al. [25] show that an a�acker can
masquerade a non-zero-rating HTTP server to be Bin-
geOn enabled, i.e., zero-rated. One recent report from
Sandvine [1] concludes, based on manual analysis of the
small amount of real-world HTTP tra�c, that a major
US network carrier could lose $7,000,000 in a month due
to such free-riding a�acks alone. Our own manual anal-
ysis, as stated in Section 2.3, also reveals that in just one
province of China, ChinaMobile loses at least half a mil-
lion US dollar per month for 71TB free-riding tra�c due
to such a�acks.

To be�er understand such free-riding a�acks, we
need to describe how existing zero-rating framework
adopted by ISPs di�erentiates charged and zero-rating
tra�c. �e tactic widely adopted in real-world ISPs is
to directly inspect the tra�c based on meta-data thus
di�erentiating zero-rating contents. However, because
a zero-rating policy involves three parties, the ISP can
never tell whether the contents are indeed authorized
by the CP as zero-rated, especially under the condition
that one of the communicating party, i.e., the client, is
malicious. Speci�cally, according to the nature of end-
to-end communication, the client has the ability to mod-
ify or inject any non-zero-rated contents in between the
ISP and the CP, even if the communication is encrypted.

To demonstrate this point, in Section 2.2 we go be-
yond the a�acks proposed by Kakhki et al. [25] by intro-
ducing two new types of free-riding a�acks: one com-
promising the end-to-end communication integrity and
the other masquerading a HTTPS server. Our results
show that manymajor real-world ISPs, such as T-Mobile
LTE and Boingo Airport WiFi, are vulnerable to these
two types of free-riding a�acks. �at is, even if the ISP



�xes the vulnerability proposed by Kakhki et al. [25] by
authenticating the CP, free-riding a�acks still exist.
As ISPs cannot di�erentiate zero-rating contents

without the involvement of CPs, several recently-
proposed zero-rating frameworks also include CPs in
the process. In fact, many CPs, such as Facebook [11],
also express their interest in a zero-rating framework,
because free-riding tra�c is eventually being charged
to the CPs in terms of a payment responsibility shi�. In
some other cases such as United cabin WiFi and China
Mobile’s Migu video, the CPs are controlled by the ISPs,
i.e., they are automatically involved.
Although theoretically it is possible to build a se-

cure, zero-rating framework with both the CP and the
ISP are involved, such e�ort is not straightforward. In
fact, existing frameworks—no ma�er from academia or
industry—are both vulnerable to free-riding a�acks ac-
cording to our analysis and experiments in Section 2.2.3.
For example, Yiakoumis et al. proposed network cook-
ies [50] in which an authentication token (called net-
work cookie) serves as a ticket for the ISP to zero-rate
corresponding tra�c. We show that an a�acker can ei-
ther bind a network cookie designated for zero-rating
tra�c to normal tra�c or inject non-zero-rating data
into zero-rating tra�c to bypass the zero-rating policy.
For another example, Facebook provides an IP whitelist-
based framework, called Facebook Zero [11], which al-
lows ISPs to obtain an IP list for authentication. We
also show that such approach is vulnerable, because a
malicious user with the knowledge of all the communi-
cation information, such as TCP sequence number, can
easily camou�age TCP/IP packets. To summarize, none
of existing frameworks realize that the free-riding ad-
versary, having access to all the end-to-end communica-
tion information, is di�erent from a traditional network
a�acker, such as a man-in-the-middle—therefore, they
cannot defend against free-riding a�acks.
In this paper, we propose a brand-new Zero-rating

FRamework with thrEe partiEs (ZF���) to defend
against the powerful free-riding adversary. �e key in-
sight of ZF��� is that the ISP and the CP need to ex-
change authentication information of the CP-user com-
munication exclusively from the user. �ere are two
points worth noting. First, the information should be
kept from the user, a potential free-riding a�acker. �at
is why some existing work, like Network Cookies [50]
making the cookie information available to the user, fail
to defend against free-riding a�acks. Second, the in-
formation should be able to authenticate the commu-
nication between the user and the CP. �erefore, an
IP whitelist-based approach, which adopts IP, a piece
of forgeable information, cannot defend against free-
riding a�acks.
While the insight of ZF��� is intuitively simple, the

challenges lie in that the ZF���’s design needs to satisfy
the following properties:
• Security. ZF��� needs to validate the authenticity

of the zero-rating CP and verify the integrity of the
communication between the CP and the user.

• Backward Compatibility. ZF��� needs to incur min-
imum deployment burden to both CPs and ISPs, in-
cluding no changes to existing (i) codebase and (ii)
network packets. Speci�cally, any such changes may
break existing network functionalities, such as intru-
sion detection systems and loader balancers.

• Privacy. ZF��� needs to preserve the communication
privacy between the user and the CP. �at is, the CP
cannot directly reveal any communication contents to
the ISP for authentication.

• Performance. �e performance overhead added to
the end-to-end communication needs to be minimum.
For example, if an unencrypted communication is suf-
�cient between the CP and the user, we do not want to
encrypt the communication for authentication, which
brings overhead.
Speci�cally, we design a secure protocol, called ZF���

control plane protocol, which transfers keyed hash, such
as hash-based message authentication code (HMAC), of
the CP-user communication (i.e., de�ned as data plane).
Our protocol is simple and minimize—the protocol only
needs to preserve server authenticity and data integrity
for both control and data planes but not necessarily data
secrecy like TLS. In particular, we make the following
contributions in design ZF��� control plane protocol to
meet all the four properties as mentioned above. .
• Conducting a formal security analysis. We formally

model ZF��� control plane protocol using ProVerif, a
formal protocol cryptographic analysis tool. ProVerif
concludes that ZF��� is secure, i.e., robust to free-
riding a�acks and we also discover that such protocol
design is subtle because a simple variation can lead to
a vulnerable protocol.

• Deploying pluggable components at both the ISP and
the CP. To ease the deployment burden and maintain
backward compatibility, we deploy a so-called server
agent at the gateway of the CP that sni�s the tra�c,
hashes necessary packets and sends secure hashes to
the ISP for authorization purpose. Meanwhile, we de-
ploy a so-called ISP assistant at the ISP’s core network
that also sni�s the tra�c, hashes packets and commu-
nicates with the server agent.

• Verifying packet integrity without violating end-to-
end privacy. �e ISP assistant veri�es packet in-
tegrity by checking the secure hashes sent from the
server agent: Only when the ISP assistant �nds a
match, the corresponding packet will be authorized
for zero-rating service. �at is, ZF��� does not need



to understand the application layer protocols, thus
preserving end-to-end privacy.

• Matching hash values in a distributed manner. �e
ISP assistant matches hashes received from the server
agent by parallelizing the task to distributed nodes
based on the pre�xes of the hash values. Our evalu-
ation shows that the non-blocking mode of ZF���—a
mode used in mobile network as users can pay bills
a�erward—incurs only 1.26% overhead on the load-
ing time of Top 500 Alexa websites and the blocking
mode—a mode used in WiFi network—incurs 8.79%
overhead. Our evaluation also shows both non-
blocking and blocking modes introduce less network
latency than TLS encryption.
We implemented an open-source prototype version of

ZF��� at the following repository (h�ps://github.com/
zfree2018/ZFREE) as well as a demo website (h�p://
zfree.org/).

2 Free-riding Attacks
We �rst describe the threat model by presenting the
roles of three parties in Section 2.1. �en, in Section 2.2,
we present how to launch free-riding a�acks on a broad
range of real-world ISPs and research prototypes. Lastly,
in Section 2.3, we introduce a manual analysis of free-
riding a�acks in China Mobile, a major ISP in China.
2.1 �reat Model

Our threat model has three parties, i.e., the user, the ISP
and, the CP, as described below.
• User. A user visits the Internet under the service pro-

vided by the ISP via a client in terms of User Equip-
ment (UE), e.g., mobile phone, in the mobile network.
Normal tra�c from the user is charged, and a small
portion is zero-rated under the policy between the ISP
and the CP. Our threat model assumes that the user is
potentially malicious, i.e., trying to bypass the charg-
ing policy enforced by the ISP.

• Internet Service Provider (ISP). An ISP provides In-
ternet service to the user. Our threat model assumes
that the ISP is benign, i.e., trying to protect itself from
free-riding a�acks launched by users. Note that we
exclude a malicious ISP because such scenario will fall
back to the traditional end-to-end connection prob-
lem where the ISP is the man-in-the-middle.

• Content Provider (CP). A CP provides abundant con-
tents, e.g., multimedia and games, to users. Our threat
model assumes that the CP is benign, although a user
may masquerade zero-rating CPs to mislead ISP.

2.2 Case Studies on Free-riding Attacks against
real-world ISPs and Research Prototypes

In this section, we describe how to launch free-riding at-
tacks against ISPs, such as real-world mobile networks,
WiFi networks, and research prototypes.

2.2.1 Real-world Mobile Networks

Real-world mobile ISPs adopt di�erent tactics to zero-
rate unencrypted (HTTP) or encrypted (HTTPS) tra�c.
Speci�cally, mobile ISPs adopt Deep Packet Inspection
(DPI) to inspect the Host �eld of the HTTP header and
determine whether the �eld belongs to a zero-rating CP.
As for HTTPS tra�c, mobile ISPs extract the destina-
tion host name from the Server Name Indication (SNI) in
Server Name Extension segment of the client hello mes-
sage and uses it as the determining factor of the zero-
rating policy.

Due to the simple inspection tactics, an a�acker can
launch two types of free-riding a�acks as follows. First,
the a�acker can masquerade a zero-rating tra�c by
modifying either the Host or SNI �eld in the HTTP(S)
request packet. Second, the a�acker can create a proxy
between the ISP and a zero-rating CP, which modi�es
the CP’s response. Such response modi�cation is intu-
itive for unencrypted tra�c; as for a�acking encrypted
tra�c, because the client is malicious, the client can de-
crypt the content using the session key, modify packet,
and then encrypt it again.

Now let us look at how these two types of free-riding
a�acks work for real-world ISPs. Particularly, we tested
three zero-rating programs of di�erent real-world ISPs,
i.e., the BingeOn program of T-Mobile, the Migu video
service of China Mobile, and the ‘Wo+Tencent’ video
streaming service of China Unicom. In each case, we
use the volume of charged data to verify whether the
a�ack succeeds. Table 1 shows the overall results: ex-
cept for these cases when the corresponding service is
unavailable, all zero-rating programs of real-world ISPs
are vulnerable to both types of free-riding a�acks.

2.2.2 Real-world WiFi Networks

�ere is no o�cial documentation about how real-world
WiFi networks zero-rate tra�c. According to our anal-
ysis, the tactics are similar to mobile networks and we
can launch the same free-riding a�acks as in mobile net-
works. Speci�cally, we tested two types of freeWiFi net-
works, i.e., United airline cabin WiFi and Boingo WiFi
in Chicago O’Hare International Airport. United air-
line provides freeWiFi network when users visit certain
partners’ websites, such as united.com and hertz.com.
Boingo in Chicago O’Hare international airport pro-
vides a free WiFi network for 30 minutes and then
charges the users.

Table 1 shows that bothWiFi networks are vulnerable
to free-riding a�acks when the corresponding service is
available. �ere are two things worth noting. First, we
test the United cabin WiFi networks on a United �ight
from Newark Liberty International Airport, NJ to Mi-
ami International Airport, FL in December 2016. On
that speci�c �ight, United WiFi only allows users to



Table 1: Summary of the a�acks on various defenses, such as these deployed on real-world ISPs and prototypes.
Mobile Network WiFi Network Prototypes

T-Mobile China Mobile China Unicom United ORD Network Cookies IP Whitelist

Unencrypted tra�c Request masquerade 7 7 N/A 7 7 7 7
Response modi�cation 7 7 N/A 7 7 7 7

Encrypted tra�c Request masquerade 7 N/A 7 N/A 7 7 7
Response modi�cation 7 N/A 7 N/A 7 7 7

7: �e ISP is vulnerable to that free-riding a�ack; N/A: Corresponding zero-rating service is not available.

visit HTTP version of united.com and hertz.com but
not HTTPS version. Because all the HTTPS tra�c is
blocked by default when the user does not pay for the
Internet, an a�acker cannot masquerade HTTPS traf-
�c. Second, we launch the free-riding a�acks against
the boingo WiFi in the ORD airport a�er the 30-minute
free trial expires.

2.2.3 Research Prototypes

In this part, we launch free-riding a�acks against re-
search prototypes that receive information from CPs
for authentication. Speci�cally, we tested two proto-
types: Network Cookies [50] , a zero-rating framework
utilizing cookie-like tokens for authentication, and IP
whitelist, which authenticates tra�c based on a preset
whitelist of the CP’s IP addresses.

Network Cookies We �rst launch free-riding a�acks
against Network Cookies. Because the cookie server
does not bind issued cookies to zero-rating tra�c, a user
can abuse the cookie for any tra�c to the server. Fur-
thermore, the communication integrity between a zero-
rating CP and a user can be compromised by a man-
in-the-middle a�acker as the cookie does not validate
the contents conveyed in the communication. We show
that both of the implementation and protocol design in
Network Cookies is vulnerable to free-riding a�acks.
Details about the vulnerability in their protocol can be
found in Section 6. We now discuss their implementa-
tion. Speci�cally, we obtain the original implementation
from the authors of Network Cookies paper and deploy
the implementation in our lab environment. Network
Cookies client, ISP middlebox and cookie server are in-
stalled at three lab servers with Ubuntu 16.04 operat-
ing systems: �e client asks for Network Cookies to-
gether with DNS requests and the ISP middlebox ver-
i�es Network Cookies received from the client via a
veri f ycookie function. We also setup a CP server, i.e., a
NGINX web server, as the zero-rating content provider,
and con�gure the hostname of the CP server to be zero-
rated in the cookie server.
We then perform the aforementioned free-riding at-

tacks and show that the prototype is vulnerable in Ta-
ble 1. First, we create a malicious client application that
binds the zero-rating network cookie obtained from the
cookie server to a non-zero-rating tra�c, i.e., a�ach-

ing a valid network cookie in the HTTP header �eld
‘network-cookie’ with a non-zero-rating hostname. �e
results show that the ISP marks the tra�c as zero-rated,
thus exposing the vulnerability to free-riding a�acks.
Second, we create a proxy between the ISP and the CP
server to modify the HTTP tra�c. �e results show that
the proxy can successfully inject any arbitrary contents
into a zero-rated tra�c.

IP Whitelist We then launch free-riding a�acks
against a zero-rating framework based on IP whitelist.
Speci�cally, here is how we setup the testing environ-
ment. We establish a CP server in a campus network
and then a client in DigitalOcean Cloud. �en, we setup
an IP whitelist server in between the client and the CP
server that only allows zero-rating packet to be for-
wared. Now let us explain how we launch these two
types of free-riding a�acks.

First, we setup a masqueraded CP server in a di�er-
ent campus network, which pretends to be the zero-
rating CP server. �en, the client—which is cooperat-
ing with the masqueraded server—establishes a connec-
tion, either encrypted or unencrypted, with the real CP
server. Once the connection is created, the client for-
wards all the connection information, such as the se-
quence number, the acknowledgement number, the des-
tination port, the source port and the TCP �ags, to the
masqueraded CP server. �e masqueraded server, based
on the received information, cra�s TCP packets with
zero-rating header mimicking the real CP server’s be-
havior and send it to the client. As shown in Table 1, we
can successfully launch these free-riding a�acks against
an IP whitelist based zero-rating framework. Our ex-
periment results further show that we can launch such
free-riding a�ack with only small amount of charged
tra�c, i.e., the information about the TCP connection
to the real CP server. Speci�cally, the a�ack only re-
quires 386 bytes for such information to the masquer-
aded server and the rest will be all free-riding tra�c.
Note that the masqueraded server needs information
about the TCP connection to the real CP server because
the ISP may have a �rewall that checks all the connec-
tions and blocks malformed ones. Another thing worth
noting is that the masqueraded server can embed free-
riding tra�c in TCP retransmission packets so that even



if the ISP checks the tra�c volume, it cannot notice the
di�erence.
Second, we setup a proxy in between the real CP

server and the client to inject or modify the contents
and the results prove the feasibility. Interestingly, in our
prior experiment about masqueraded CP, the packet in-
tegrity between the client and the real CP is also vio-
lated, because the client can directly receive the cra�ed
packet from the masqueraded CP if we use the next se-
quence number of the client-CP communication in the
cra�ed packet.

2.3 Manual Analysis of Free-riding Attacks in
China Mobile

In this section, we measure the severeness of free-riding
a�acks from an ISP’s perspective. Speci�cally, we try to
estimate the amount of free-riding tra�c in China mo-
bile’s network. We understand that this is a generally
di�cult task, because if we can accurately measure free-
riding a�acks, such approach can be used for detection
as well. In this subsection we gauge a lower bound for
the amount of free-riding tra�c.
�e detailed steps for calculation is as follows. First,

we calculate the average amount of zero-rated data for
a normal user, which is roughly 300MB/month. Second,
we �lter these users whose zero-rating tra�c amount
is signi�cantly higher than that of a normal user, say
3GB/month, from China mobile’s billing system. Lastly,
wemanually inspect the zero-rating tra�c of such users,
e.g., looking at the communication contents if unen-
crypted, to decide whether it is free-riding tra�c.
Our manual analysis is performed on the billing sys-

tem of China Mobile’s network in one province in Jan-
uary 2016. �e results reveal 71TB free-riding tra�c,
equaling to half a million US dollar based on the China
Mobile data charging rate. Note that one interesting
�nding is that some users consumed more than 30GB
zero-rating data with Migu music per month, which is
technically impossible for that zero-rating service be-
cause the user stream music for more than 24 hours per
day.

3 Overview
In this section, we describe ZF���’s architecture using
mobile network as a deployment example shown in Fig-
ure 1. ZF��� has two pluggable components: ISP as-
sistant and CP server agent. �e ISP assistant, located
in the ISP’s core network, is responsible for interacting
with the server agent from di�erent CPs, authenticating
CPs and verifying zero-rating tra�cs with the informa-
tion obtained from the server agent. �e server agent,
located in CP side, sni�s zero-rating outgoing tra�c and
sends information, i.e., packet keyed hashes, to the ISP
assistant via ZF��� control plane protocol.
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Figure 1: ZF���’s Architecture over Mobile Network

We demonstrate how to zero-rate tra�cs in ZF���,
from a mobile connection’s perspective. When a user
connects to a CP server via a request, mobile ISP looks
up the user’s IP multimedia private identity (IMPI) via
Mobility Management Entity (MME), �nd the user’s
subscription information from Home Subscriber Server
(HSS), and determine whether the user is subscripted
for zero-rating service. If yes, the mobile ISP checks the
Host or SNI �eld, depending on HTTP or HTTPS con-
nection, of the request, and assign a zero-rating GPRS
Tunneling Protocol Tunnel (GTP Tunnel) to route the
packets to ISP assistant where the ISP assistant sni�s
data. Next, the request is transferred via GTP tunnel to
the gateway (GW) thus forwarding to the CP data center.
CP reply back a response based on the request. ZF���’s
server agent obtains the response, e.g., via mirroring the
tra�c, generate keyed hashes and send to ISP assistant
over ZF��� control plane. At the same time, the origi-
nal response is transferred to the ISP and encapsulated
from the GW back to the zero-rating GTP tunnel. �e
ISP assistant also obtains the response, generates keyed
hashes, matches the hashes with those received from
ZF��� control plane, and decides whether to zero-rate
the tra�c. �e ISP assistant talkes with ISP Policy and
Charging Rules Function (PCRF) if the response tra�c
should not be zero-rated.

We note that ZF��� is designed to prevent free-riding
a�acks. �e ISP assistant will verify CP server’s authen-
ticity to prevent the client from connecting to a mas-
queraded server. At the same time, although the client
has free access to modify the end-to-end communica-
tion, any modi�cation will be monitored by the ISP as-
sistant via matching packet hash values without intrud-
ing users’ privacy.

4 ZF��� Control Plane Protocol
In this section, we introduce the two-phase, six-step
control plane communication protocol in Figure 2,
which is triggered by the data plane communication, be-
tween the ISP assistant and the server agent. We �rst
discuss the Setup Phase, which is used to establish a con-
nection between the CP and the ISP assistant, in Sec-
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Figure 2: ZF��� Control Plane Protocol

tion 4.1 and then the Control Phase, which is used to
authenticate the communication between the user and
the CP, in Section 4.2.

4.1 Setup Phase

�e setup phase, inspired by TLS 1.3, establishes a com-
munication between the ISP assistant and the server
agent, which agrees on a list of options, such as cipher
suite and connection type, exchanges session keys and
then veri�es each other’s certi�cate.

1 Handshake. �e ISP assistant and the server
agent exchanges setup options in the handshake step
via “HELLO” messages. Speci�cally, both parties in-
clude a random number of computing keys, exchange
cryptographic options, i.e., cipher suites, and agree on a
list of ZF��� options, such as policies (e.g., zero-rating
and parental control), connection type (e.g., blocking vs.
non-blocking and real-time vs. batch) indicating how
packet hashes are sent to the ISP assistant, and a list of
IP address ranges (e.g., 88.88.0.0/16) de�ning clients be-
hind the ISP.�en, based on the “HELLO”message, both
the ISP assistant and the server agent compute a tra�c

key similar to TLS 1.3 and can be used for future com-
munications in the setup phase.

2 Certi�cate Veri�cation. In this step, the ISP as-
sistant and the server agent verify each other’s certi�-
cate and compute a session key for control phase com-
munication. Speci�cally, the server agent �rst sends its
certi�cate and private key signature to the ISP assistant
for veri�cation. �en, both parties calculate the session
key for communication. Next, the ISP assistant also send
its certi�cate and private key signature to the server
agent for veri�cation. It is worth noting that the veri-
�cation of a client certi�cate is uncommon in TLS com-
munication, but we include it in ZF��� protocol so that
both parties are veri�ed. Each ISP assistant and server
agent has its own certi�cate. �at is, di�erent ISPs may
assign di�erent certi�cates to their ISP assistant, and the
same applies to di�erent CPs. Both ISP assistant and
server agent have a certi�catewhitelist that only accepts
certain certi�cates—the whitelist is created based on the
mutual agreement between the ISP and the CP.

4.2 Control Phase

A�er setup, the communication between the ISP assis-
tant and the server agent is triggered by the data plane
communication, and we call this control plane commu-
nication the control phase. Note that a key point here is
that we need to ensure the data integrity but not neces-
sarily data secrecy.

3 Data Plane TLS Setup (Optional). In this step,
the client talks with the CP server in the data plane. �e
communication is in plaintext using TCP or optionally
with encryption using TLS. �e choice is purely made
by the agreement of the client and the CP server.

4 Realtime-type Connection. When a response
is sent from the CP server to the client during their com-
munication in the data plane, the control plane commu-
nication is correspondingly triggered. Say, the connec-
tion type is Realtime (de�ned in Step 1 ). �e server
agent sni�s all the response packets and send the keyed
hashes of the responses via “HASHPUSH” messages.
Note that the “HASHPUSH” message itself also needs
to be hashed with a key to ensure control plane data
integrity. Accordingly, the ISP assistant also sni�s and
hashes all the response packets with the session key, and
matches the hasheswithwhat it receives from the server
agent. �e ISP assistant takes di�erent actions depend-
ing on the ZF��� con�guration mode.

4a Non-blocking Mode. �e ISP assistant only
sni�s data plane packets.

4b Blocking Mode. �e ISP assistant blocks data
plane packets and allows them only a�er a match.

5 Batch-type Connection. When the connection



typeturns to Batch (de�ned in Step 2 ). �e server
agent waits for a “HASHPULL” message from the ISP
assistant and then sends a “HASHPUSH” message.

6 Status Report. Both the ISP assistant and the
server agent can report the current status to each other,
e.g., unmatched hashes, for diagnosis purpose. Simi-
larly, the message is accompanied with a keyed hash of
itself to ensure integrity.

5 System Design
We present the system design part of both the server
agent and the ISP assistant in this section.

Algorithm 1: ISP Assistant Algorithm

Format ZFree::Command refers to these de�ned in ZFree Protocol.
Input: RawPacket, ZFree :: Command

struct {
double Session ID, ISP Random, ISP Key Share, ZFree Version

Connection Type, Address List Length

�oat Policy

array[ ] AddressList

} ISP Hello

1 Function Handshake():
2 Socket � Establish to Server Agent
3 Build and Send Packet(ZFree::ISP HELLO)
4 Socket � Awaiting ZFree :: Command

5 if Control Plane Interface (Socket) == ZFree::SA HELLO then
6 Compute Tra f f ic Key based on SA Key Share & SA Random

7 Set ZFree Version and Connection Type

8 else if Control Plane Interface (Socket) == SA Certi�cate then
9 SA Certi f icate � Decrypt(Tra f f ic Key, Enc SA Cert)

10 else if Control Plane Interface (Socket) == SA Finish then
11 SA PKsa Sign � Decrypt(Tra f f ic Key, Enc SA Finish)
12 if Verify SA Certi f icate with CA PASS then
13 Compute Session Key based on

ISP Key Share, Master Secret, Tra f f ic Key

14 Enc ISP Cert � Encrypt(Tra f f ic Key , ISP Cert)
15 Build and Send Packet(Enc ISP Cert)
16 Enc ISP Finish � Encrypt(Tra f f ic Key ,

ISP PKisp Sign)
17 Build and Send Packet(Enc ISP Finish)
18 �read ReceiveSAHash()
19 �read ISPProcessHash(Session ID, Session Key)
20 else
21 Build and Send Packet(ZFree::STATUS, disconnect)
22 Socket .close

23 �read ISPProcessHash(Session ID, Session Key):
24 Packet Queue � ZFreeParseModule(DataPlane Packet)
25 ISP Keyed Hash � HMAC(Session Key,Packet Queue)
26 if Distributed Hash Match(ISP, ISP Keyed Hash)==True then
27 PCRF Charging Module.Apply(Policy)
28 else
29 ISP Distributed HashDB.save(ISP Keyed Hash)

30 �read ReceiveSAHash():
31 if ConnectionType == batch then
32 Build and Send Packet(ZFree::HashPull)

33 SA Keyed Hash � Control Plane Interface(ZFree::HashPush)
34 if Distributed Hash Match(CP,SA Keyed Hash)==True then
35 PCRF Charging Module.Apply(Policy)
36 else
37 CP Distributed HashDB.save(SA Keyed Hash)

38 Function StatusCheck():
39 process corresponding status

40 Function DistributedHashMatch(Party,Keyed Hash):
41 select database (Party) and matching node (Keyed Hash&Mask)

5.1 Server Agent

Algorithm 2: Server Agent Algorithm
Format ZFree::Command refers to these de�ned in ZFree Protocol.
Input: RawPacket , ZFree :: Command

struct {
double Session ID,SA Random, SA Key Share, ZFree Version

Connection Type

�oat Policy

} SA Hello

1 Function Handshake():
2 Socket � Awaiting ZFree :: Command

3 if Control Plane Interface (Socket) == ZFree::ISP HELLO then
4 Compute Tra f f ic Key based on ISP Key Share &

ISP Random

5 Negotiate ZFree Version and Connection Type

6 Build and Send Packet(ZFree::SA HELLO)
7 Enc SA Cert � Encrypt(Tra f f ic Key , SA Cert)
8 Build and Send Packet(Enc SA Cert)
9 Enc SA Finish � Encrypt(Tra f f ic Key , SA PKsa Sign)

10 Build and Send Packet(Enc SA Finish)
11 Compute Session Key based on

ISP Key Share, Master Secret, Tra f f ic Key

12 else if Control Plane Interface (Socket) == ISP Certi�cate then
13 ISP Certi f icate � Decrypt(Tra f f ic Key, Enc ISP Cert)
14 else if Control Plane Interface (Socket) == ISP Finish then
15 ISP PKisp Sign � Decrypt(Tra f f ic Key, Enc ISP Finish)
16 if Verify ISP Certi f icate with CA PASS then
17 �read

ProcessHash(Session ID, Session Key, Connection Type)
18 else
19 Build and Send Packet(ZFree::STATUS, disconnect)
20 Socket .close

21 �read ProcessHash(Session ID, Session Key, Connection Type):
22 Packet Queue � ZFreeParseModule(DataPlane Packet)
23 Keyed Hash � ZFreeHashEngine.HMAC(Session Key,

Packet Queue)
24 switch ConnectionType do
25 case Realtime do
26 Build and Send Packet(ZFree::HASHPUSH, Session ID,
27 Keyed Hash, TimeStamp, HMAC(this.Packet))

28 case Batch do
29 Hash Queue.save(Keyed Hash)
30 Set ControlPlaneListener(Hash Queue)

31 Function ControlPlaneListener(Hash Queue):
32 Create Listener = Control Plane Interface (ZFree :: Command)
33 switch ZFree :: Command do
34 case ZFree :: HASHPULL do
35 Keyed Hash � Hash �eue.get(Keyed Hash);

HASHPUSH � Session ID, Keyed Hash,
36 Time Stamp, HMAC(this.Packet)

Build and Send Packet(ZFree::HASHPUSH)

37 case ZFree :: STATUS do
38 process corresponding status

Algorithm 2 shows the system design of the server
agent. In the setup phase, the server agent �rst es-
tablishes a connection with the ISP assistant in the
Handshake function. Notably, the server agent ex-
changes ZF��� version, connection type, policy as well
as Di�e-Hellman cipher suite, pre-shared key and ran-
dom numberwith the ISP assistant via an “HELLO”mes-
sage (Line 3–6). Based on the agreed Di�e-Hellman
cipher, the server agent computes the tra�c key (Line
4) and then sends its certi�cate to the ISP assistant us-
ing the tra�c key (Line 8). A�er that, the server agent
generates a �nish message with its private key signa-



ture encrypted with the tra�c key (Line 9–10). At the
same time, the server agent also generates a session key
based on key share, master secret and tra�c key (Line
11). Next, the server agent waits for the ISP certi�cate
(Line 12–13) and ISP �nish message (Line 14–15). Lastly,
the server agent veri�es ISP’s identity with the CA: if
veri�ed, it calls ProcessHash to start data plane inspec-
tion, and otherwise terminates the socket (Line 16–20).
Packets in the data plane trigger the control phase of

the server agent. Speci�cally, the ProcessHash function
(Lines 21–30), a multithreaded function to e�ciently
process packets, parses each data plane packet using
ZFreeParseModule (Line 22), and then calculates the
keyed hash value of the packet using ZFreeHashEngine

(Line 13) with HMAC function. Based on the connection
type, the server agent chooses to send the keyed hash in
realtime mode (Line 25–27) or batch mode (Line 28–30).

5.2 ISP Assistant

Algorithm 1 shows how the ISP assistant works. In the
setup phase, the ISP assistant �rst creates a connection
with the server agent in the Handshake function (Line
1–22). Speci�cally, the ISP assistant exchanges “HELLO”
messages with the server agent (Line 3–5), computes the
tra�c key (Line 6), decrypts the server agent’s certi�-
cate and private key signature with the tra�c key (Line
11), and then veri�es the server agent’s certi�cate (Line
12). Next, the ISP computes the session key (Line 13)
and send its own certi�cate, private key signature and
a �nish message to the server agent (Line 14–17). A�er
the connection is established, the ISP assistant checkes
“STATUS” messages from the server agent (Lines 38–
39).
In the control phase, ISP assistant is triggered by (i)

a data plane packet, and (ii) a control plane “HASH-
PUSH” message. First, when a data plane packet comes,
the ISPProcessHash function (Line 23–29) parses the
packet, calculate the keyed hash, and send it to the
corresponding distributed hash matching module, i.e.,
based on the �rst two bits of the hash (bit and with a
mask in Line 41), for matching. If match, the ISP as-
sistant sends the packet to the PCRF Charging Module

(Line 27). If no match is found, the ISP assistant saves
the hash into the database and wait (Line 29). Second, in
ReceiveSAHash function (Lines 30–37), when a control
plane “HASHPUSH” message comes (Lines 31–36), the
ISP assistant also gets the keyed hash value from server
agent and uses the distributed hash matching module
for matching. Procedures are similar to the �rst case.

6 Formal Security Analysis
In this section, we perform a formal security analysis on
three zero-rating frameworks—Network Cookies [50],
IP whitelist [16, 3] and ZF���—using ProVerif [15, 14],

an automatic cryptographic protocol veri�er. Our
ProVerif models are open-source, which can be found
in ZF���’s repository (h�ps://github.com/zfree2018/
ZFREE).

6.1 Formal Models

Wemodel the general zero-rating framework in ProVerif
by describing three parties, the client, the CP and the
ISP. �e client talks with the CP server through the ISP
via a bi-directional communication, either unencrypted
or encrypted. �e unencrypted communication is plain-
text; the encrypted communication is based on an exist-
ing TLS model [13] and we also introduce a Certi�cate
Authority that issues and veri�es the CP’s certi�cate.
Now, let us introduce how each framework is modeled.

• Network Cookies. We model a cookie server dis-
tributing cookies to all the clients as described in the
paper [50]. Speci�cally, when the cookie server re-
ceives a request from a client with both the CP and
the client’s IP address, the cookie server responds to
both the client and the ISP with a cookie descriptor
consisting of a cookie ID, a cookie key and a cookie
a�ribute. Next, each message from the client to the
CP server has the cookie descriptor to let the ISP ver-
ify the message.

• IP Whitelist. We model the IP whitelist to let the ISP
check whether the source IP addresses of all the re-
sponses match the whitelist. �e whitelist is obtained
from the ISP via an encrypted communication. Note
that such IP whitelist is adopted by several industry
proposals [16, 3].

• ZF���. We add two components, i.e., the ISP assistant
and the CP server agent, and model the control and
data planes described in Section 4 as two communica-
tion channels. During the setup phase, the ISP assis-
tant �rst exchanges handshake information, such as
ZF��� version, cipher suites, and a policy set, with the
server agent, and then calculates session keys. Next,
during the communication phase, the CP server agent
sni�s all the packets in the data plane channel, gen-
erates keyed hashes and sends the information in the
control plane channel.

6.2 Veri�cation Goals

We ask ProVerif to verify the following three goals for
the aforementioned zero-rating frameworks.

Goal 1: Packet Integrity. We ask ProVerif to ver-
ify the integrity of response packets from the CP server
to the client. (�e request packets are irrelevant be-
cause they are generated by the client and can have ar-
bitrary contents.) Speci�cally, the response sent from
the CP server needs to match with the one received by
the client as shown in our query to ProVerify at the
second row of Table 2. Note that endResponseVeri f



Table 2: Summary of Formal Veri�cation Results on Network Cookies, IP Whitelist and ZF���.

Goals ProVerif�eries Network Cookies [50] IP Whitelist ZF���
Unencrypted Encrypted Unencrypted Encrypted Unencrypted Encrypted

Integrity event(endResponseVeri f (response)) ==>
event(beginResponseVeri f (response))

7 7 7 7 3 3

Authenticity in j-event(endServerVeri f (server identity))==>
in j-event(beginServerVeri f (server identity))

7 7 7 7 3 3

Secrecy attacker(AppData) 7 3 7 3 7 3

3: the property is satis�ed; 7: the property is not. Unencrypted and encrypted refer to data plane communication.

and beginResponseVeri f are in the client and CP server
functions respectively for the veri�cation.
Goal 2: CP Server Authenticity. We ask ProfVerif

to verify that the server identity matches with the zero-
rating list at the ISP side. Speci�cally, the server cert of
the CP server needs to be veri�ed by the ISP as shown
in our query to ProVerify in the third row of Table 2.
Similarly, endServerVeri f and beginServerVeri f are in
the ISP and the CP server.
Goal 3: Application Data Secrecy. We ask ProVerif to

verify the secrecy of application data between the client
and the CP server as shown at the last row of Table 2.
Note that the threat models are di�erent for Goals

1&2 and Goal 3. Goals 1&2 assume that the client is
malicious—i.e., even in encrypted mode, all the client-
side data including the session key is available to a re-
motemiddlebox controlled by the client. Goal 3 assumes
that the client is benign and a man-in-the-middle at-
tacker may exist.

6.3 Veri�cation Results

An overview of our veri�cation results can be found in
Table 2. Some detailed, raw traces can also be found
in Appendix A. To summarize, both Network Cookies
and IP whitelist are vulnerable to free-riding a�acks,
because they cannot preserve either packet integrity
or CP server authenticity; by contrast, ZF��� can de-
fend against free-riding a�acks. At the same time, our
veri�cation also shows that none of three frameworks
changes application layer security, i.e., data secrecy is
preserved if tra�c is encrypted. Now let us discuss sev-
eral example violation outputs found by ProVerif.
Output 1 (Network Cookies): Authenticity Viola-

tion. When we query endServerVeri f (server identity),
ProVerif outputs a violation case for Network Cookies.
Speci�cally, the violation shows that an a�acker can ac-
quire a zero-rating cookie and send the cookie together
with non-zero-rating contents to another server.
Output 2 (Network Cookies & IP Whitelist): In-

tegrity Violation. When we query ProVerif with
endResponseIntegrity(response), ProVerif outputs vio-
lations for both Network Cookies and IP whitelists. �e
violations show that an a�acker can obtain the response
packet from a zero-rating CP server, modify the packet
to inject contents from another CP server, and then send

the modi�ed packet to the client.
Output 3 (IP Whitelist): Authenticity Violation. When

we make an authenticity query to ProVerif for IP
whitelist, ProVerif outputs a violation showing that an
a�acker, as both a client and a man-in-the-middle, can
obtain the IP address of the zero-rating CP and insert the
IP into the response data from another non-zero-rating
CP.

Next, we show that we need to carefully design ZF���
so that a simple variation of the protocol may result in
an insecure design. We show several possible violations
of weak ZF��� variations below.

Output 4 (Weak ZF��� Variation): Integrity Violation.
�e �rst ZF��� variation is that we adopt weak hash al-
gorithm, such as SHA-1, instead of SHA-256 in ZF���
control plane protocol. When we make an integrity
query to ProVerif for this weak variation, ProVerif re-
ports that an a�acker can compromise both the tra�c
key and the session key, and then modify the “HASH-
PUSH” message to include her own hashes of non-zero-
rated packets.

Output 5 (Weak ZF��� Variation): �e second ZF���
variation is that we skip the keyed hashes of the control
plane HashPush packet. When we make an integrity
query to ProfVerif, it reports a violation, in which an
a�acker can obtain the HashPush message, modify the
message, and then change the corresponding data plane
packet as well.

7 Implementation
We implemented ZF��� with 1,890 lines of code (LoC),
i.e., 1,100 LoC for the ISP assistant and 790 LoC for
the server agent. We also setup a LTE network us-
ing ns-3 [6] and another WiFi network using Mininet-
WiFi [4]—both network simulators are popular and
adopted by many existing works [33, 35, 48]. �e LTE
network consists of several user equipment (UEs), eN-
odeBs, PDN gateway, MME and HSS; the WiFi network
consists access point (AP) and routers. �e entire setup
has 950 LoC and detailed con�guration can be found
in Section 8. Additionally, we also setup a demo web-
site with 836 LoC. In our formal veri�cation, we model
Network Cookie, ISP whitelist and ZF��� the integrity,
secrecy and authenticity queries with 450, 380 and 850
LoC respectively. All the aforementioned source code



Figure 3: Two Evaluation Test Beds (Mobile and WiFi
Environments)

can be found in the following anonymous repository
(h�ps://github.com/zfree2018/ZFREE).

8 Evaluation
In this section, we start by describing our environment
setup and then introducing each experiment respec-
tively.
Environment Setup. We setup two environments,
as shown in Figure 3, to test ISP networks, one mo-
bile network for ZF���’s non-blocking mode, and the
other WiFi network for ZF���’s blocking mode. First,
the mobile testing environment is built based on ns-3 [6]
in a physical machine with 3.2 GHz Intel due-core i7-
6950x CPU, 32GB memory and Ubuntu 16.04 LTS OS.
�emobile network consists of the ISP core network and
two groups of 1,200 user equipments (UEs) with two by
two MIMO antennas. Our ISP core network has a Serv-
ing/PDN gateway, a MME, a HSS and a PCRF. �e ISP
core network is connected with two CP servers via a
layer 3 gateway router.
Second, the airplane cabin WiFi testing environment

is built based on Mininet-WiFi [4] in a physical machine
with Intel i5-7400 CPU, 24GBmemory and Ubuntu 16.04
LTS OS. �e environment has 120 UEs and two 802.11n
access point (AP) connected with one access controller
(AC). �e AC is connected to a CP server via a layer-
three router. We also mimic the airplane cabin environ-
ment and limit the bandwidth between the APs and the
AC as 30 Mbps. Our CP server is equipped with HTTP,
HTTPs and iPerf stress testing service.
We deploy ZF��� upon these two testing networks:

both the ISP assistant and the server agent are Ubuntu
16.04 LTS virtual machines with 1.2GHZ CPU and 12
GB memory. �ey are connected with the correspond-
ing networkwith a layer 3 OpenvSwitch (OVS) throught

NS3 real-time link model and Mininet-WiFi network
bridge. �e ISP assistant and the server agent are con-
nected via an OVS VxLAN based overlay network sepa-
rating from the data plane.

8.1 End-to-end Communication

We �rst measure the overhead from the perspective of
a user of the ISP network with ZF��� enabled.

8.1.1 Page Loading Time

In this experiment, we measure the page loading time
for Top 500 Alexa websites with and without ZF��� in
both blocking and non-blocking modes. Speci�cally, we
setup one of our CP servers as a proxy that relays net-
work tra�c from Top 500 Alexa websites. Note that
we count all the tra�c as zero-rating for the measure-
ment purpose. Figure 4a shows the cumulative distri-
bution function (CDF) graph of the loading time of Top
500 Alexa websites. �e median overhead of ZF���’s
non-blocking mode is very small, i.e., 1.26%, which
mainly comes from port mirroring. �e blocking mode
of ZF��� incurs 8.79% median overhead, which comes
from the hash operations at both the ISP assistant and
the server agent.

8.1.2 Download Time with Di�erent Bandwidth

In this experiment, we test the end-to-end performance
when the user accesses the CP server under di�erent
bandwidth limits ranging from 0.1Mbps to 120Mbps.
Note that each UE is setup with peak downlink speed
as 150Mbps and all the experiments are performed six
times using legacy TCP connection, legacy TLS connec-
tion, TCP connection with ZF���’s non-blocking mode
and TLS connection with ZF���’s blocking mode. Fig-
ure 4b shows the results, i.e., the download time of a
900MB video �le in the y-axis v.s. the network band-
width in the x-axis. As expected, the download time de-
creases as the network bandwidth increases, because the
network becomes less crowded. �e download time of
ZF���’s non-blocking mode is almost the same as the
native connection, such as TCP and TLS, and the down-
load time of the blockingmode is constantly higher than
the native connection.

8.1.3 LTE Handover Testing

In this experiment, we test the end-to-end performance
during LTE handover with and without ZF���. Speci�-
cally, we setup one UE moving from a cell in the source
eNodeB to a cell in another eNodeB located 500meters
awaywith traveling speed from 10km/h to 120km/h. We
con�gure the transmission power of both eNodeBs as
46dBm and the handover algorithm as A2A4RSRQ [27,
2], and then adopt the iPerf stress test tool to keep the
UE receiving data from our CP server. Figure 5 shows
our LTE handover testing results. First, the transmis-
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Figure 4: ZF��� Evaluation Graphs: (a) �e CDF of Loading Time of Top 500 Alexa Websites; (b) �e End-to-end
Delay vs. the Network Bandwidth; (c) �e End-to-end Delay vs. the Number of Connections in Mobile Network
Environment with ZF���’s Non-blocking Mode; and (d) �e End-to-end Delay vs. the Number of Connections in
WiFi Environment with ZF���’s Blocking Mode.

Figure 5: LTEHandover�roughput in both LegacyMo-
bile Network and Mobile Network with ZFree Enabled

sion speed decreases as traveling speed increases with
andwithout ZF��� because the UE has to quickly switch
from one cell to another. Second, the transmission speed
with ZF��� enabled is a li�le bit smaller than the one
without ZF���, i.e., incurring 1.45% overhead. �e over-
head number is very similar to the one during normal
transmissionwithout handover, whichmeansZF��� has
li�le in�uence on the handover process.

8.2 ISP Core Network

In this experiment, wemeasureZF��� from the perspec-
tive of the ISP core network.

8.2.1 Scalability

In this experiment, wemeasurewhetherZF��� can scale
when the number of connections increases. Particu-
larly, we measure the end-to-end delay, i.e., the inter-
val between the timestamp at which the client sends
a request and the one at which the client receives the
response. �e experiment is performed in cellular net-
work environment for non-blocking mode and in air-
plane WiFi environment for blocking mode. Figure 4c
and 4d shows the end-to-end delay of non-blocking and
blocking modes in the x-axis when the number of con-
nections in the y-axis increases. In both �gures, the end-
to-end delays of TCP and TLS without ZF��� are shown
as a baseline for comparison. Our results show that the

end-to-end delay is almost �at as the number of connec-
tions increases.

8.2.2 Stress Test

In this section, we perform a stress test of ZF��� in
terms of network latency and bandwidth following RFC
2544 [7], which documents benchmarking methodology
for network interconnect devices. Speci�cally, we re-
play real-world tra�c captured from netresec [5] and
tcpReplay [12] in network access point. �e Netresec
network trace [5] has high-speed (8–10Gbps) network
�ows with 40 million packets from 1,982 applications,
and the other [12] low-speed (500Mbps) network �ows
with 791,615 packets from 132 applications. During the
5-hour period, the low-speed trace is repeated continu-
ously from both CP servers to the UEs while the high-
speed trace only from one CP server to the UEs every
half an hour. �e purpose is to simulate a bursty tra�c
scenario in the test.

�e testing methodology works as follows. We use
TCPreplay [9], a popular replaying so�ware, to rewrite
the packet header including the source IP, the destina-
tion IP, the source MAC address and the destination
MAC address of the tra�c. We also uniformly random-
ize the destination IP andMAC addresses of all the �ows
to di�erent UEs so that the tra�c can be evenly dis-
tributed inside the network.

Figure 6 shows the network tra�c in data plane and
corresponding CPU Usage for the ISP Assistant (top)
and two CP Agents (middle and bo�om). During our
replay, the legacy ISP network without ZF��� has 9–
10Gbps peak tra�c with an average rate of 5.991Gbps
in Figure 6 (top); the ISP network with ZF��� also
has 9–10Gbps peak tra�c with a slightly lower aver-
age rate of 5.933Gbps. �e CPU usage of the ISP assis-
tant is 70% during peak and 20% in normal case. Our
�rst CP server has 1.582Gbps peak tra�c in legacy net-
work and 1.571GbpswithZF���’s server agent as shown



Figure 6: Network Tra�c (Gbps) and CPU Usage (%) for
the ISP Assistant (Top) and two CP Agents (Middle and
Bo�om) under Stress Test

in Figure 6 (middle). �e average CPU usage for the
�rst CP server is 15.4%. Our second CP server has
4.332Gbps peak tra�c in legacy network and 4.213Gbps
with ZF���’s server agent as shown in Figure 6 (mid-
dle). �e average CPU usage for the second CP server is
42.2%.

In sum, the evaluation results show that ZF��� can
support the needs for ISP core network with reasonable
CPU overhead.

8.2.3 Control Plane Overhead

In this part, wemeasure two overhead: the control plane
communication overhead and the control plane process-
ing overhead. First, we replay a 900MB zero-rating
video �le from one CP to one UE and calculate the vol-
umes of packets between the ISP assistant and the server
agent compared with the total amount of tra�c. Our
evaluation shows that ZF��� introduces a small amount,
i.e., 4.2%, of additional tra�c in terms of control plane
communication overhead.

Second, we compare ZF��� control plane protocol
with a naive implementation that transfers plain hash
values in a TLS connection. Our evaluation shows
that such implementation incurs 2.8 times more over-
head than ZF��� control plane protocol when process-
ing 100MB data plane tra�c. �e reason is that keyed
hash is cheap as compared to encryption, such as AES.

8.3 Security

In this experiment, we evaluate the security of our
ZF��� implementation by using three types of zero-
rating a�acks. Two types are documented in Section 2,
i.e., masquerading a CP server and modifying the re-
sponse packet from the CP server. We also perform
a TCP retransmission-based free-riding a�acks [20]
against ZF���. Speci�cally, we add two virtual switches,
one between the ISP and the CP gateway, and the other
between the client and the ISP. �e former is used to
modify response packets, e.g., encapsulating packets
into TCP retransmission, and the la�er is used to re-
cover the modi�ed contents, e.g., stripping the added
TCP headers. Our evaluation results show that ZF���
is robust to all three types of free-riding a�acks. Specif-
ically, ZF��� in its blocking mode rejects correspond-
ing packets and the client can not get the response until
timeout.

9 Discussions
In this section, we discuss several aspects of ZF���.
First, we discuss ethics concerns for the free-riding at-
tacks that we launched against real-world ISPs. Dur-
ing all the experiments, we try to limit the damage that
could occur to these ISPs. We only downloaded a small
amount of but enough data so that the free-riding at-
tack e�ect can be observed. �e downloaded contents
are hosted on our own server and contain no real infor-
mation. Moreover, we paid these ISPs a�er all the exper-
iments. For mobile networks, we paid the ISP with extra
data tra�c fees for the amount that we used; for WiFi
network, we purchased the WiFi, e.g., on United �ight,
a�er our experiment. We also tried our best to inform
the tested ISPs about the found vulnerabilities. All the
tested ISPs are informed of this issue.

Second, we discuss the general issue about network
neutrality. As mentioned by Yiakoumis et al. [50], some
people raised concerns that certain zero-rating services
could violate network neutrality. �e general issue is
orthogonal to our paper. �e current status is that
the Federal Communications Commission (FCC) deter-
mines whether a zero-rating service creates unfair con-
ditions for consumers on a case-by-case basis. So far
FCC approves most of existing zero-rating services pro-
vided by ISP.

�ird, we discuss how third-party contents, e.g., ads
included in a webpage, are zero-rated. �e current pro-
totype of ZF��� can only zero-rate �rst-party contents
but not third-party. We note that this is a traditional
hard problem in zero-rating framework and many real-
world ISPs do not zero-rate third-party contents as well.
For example, when we visit history.com, T-Mobile only
zero-rates contents from history.com but not the third-
party ads embedded inside the webpage. We leave it as



future work to include third-party contents.
Fourth, we discuss how to deal with CDN in ZF���.

Each CDN server needs to install a server agent and
communicate with the ISP assistant. We realize that
in mobile network scenario the case is even sometimes
simpli�ed, because many mobile ISPs host their own
CDN and provide contents directly from their base sta-
tion. �at is, the server agent and the ISP assistant may
be co-located in the same local network.
Lastly, we talk about the robustness of ZF��� against

DoS a�acks. ZF��� computes the hashes of server re-
sponses but not requests. �at is, if there exists DoS
a�acks, the CP server is the target before ZF���, which
can help ZF��� to �lter DoS requests. In practice, a DoS
a�ack �lter is deployed at the CP’s gateway and ZF���
is located behind this DoS a�ack �lter.

10 Related Work
We discuss related work in this section.

10.1 Existing Attacks

We categorize existing a�acks on ISP Policy and Charg-
ing Rules Function (PCRF) [10, 8] into two types, free-
riding and overcharging.
First, an a�acker as a malicious client can mis-

lead ISP’s PCRF and obtain access to illegitimate free
data—de�ned as free-riding a�acks. In the past, re-
searchers show that an a�acker may utilize di�erent
uncharged protocols, including TCP retransmission [21,
20], DNS [41] and ICMP [31], to launch free-riding
a�acks. �e only three-party free-riding a�ack men-
tioned by Kakhki et al. [25] is to change the “Host” �eld
of an HTTP packet to bypass charging. As a compari-
son, the measurement described in Section 2 studies the
HTTPS protocol and also propose a new free-riding at-
tack in which an a�acker can modify the response from
a zero-rating server and inject non-zero-rating contents.
Second, a man-in-the-middle a�acker can generate

huge amount of data between the client and the ISP
to cause the users being charged for additional tra�c,
which is called overcharging a�acks [31, 21, 42]. �is
type of a�ack is out of scope and one can refer to exist-
ing works [31, 21, 42] for solutions.

10.2 Existing Zero-rating Framework

In general, there are two types of zero-rating frame-
works: ISP-only and ISP-CP approaches. First, many
ISPs use tra�c inspection techniques, such as Deep
Packet Inspection (DPI) and its enhancement [47, 32, 51]
to di�erentiate network tra�c. Similarly, many other
approaches [26, 28, 49, 44, 45, 52] can also be used to
inspect network tra�c. Although such approaches are
e�ective in di�erentiating network tra�c, especially on
the protocol layer, they cannot be used to defend against

our free-riding a�acks. �e reason is that the zero-
rating contents in our scenario are generated by the CP
and possibly encrypted, i.e., it is impossible and insecure
for the CP to understand or inspect the tra�c.

Second, people also propose to let the ISP and CP ne-
gotiate on a zero-rating policy. For example, Limited
Use of Remote Keys (LURK) [34] and Session Protocol
for User Datagrams (SPUD) [23] are two new protocols
that allowmiddlebox to inspect end-to-end tra�c. Yiak-
oumis et al. [50] propose a tra�c authentication archi-
tecture so-called network cookie to provide on demand
zero-rating services. Facebook Zero [11, 3] allows CP to
provide the ISP an IPwhitelist so that only tra�c to an IP
in the list is zero-rated. However, none of the aforemen-
tioned approaches can defend against free-riding a�acks
as they fail to authenticate zero-rating servers and verify
packet integrity. Additionally, LURK and SPUD require
the server codebase modi�cations, i.e., being incompat-
ible with existing codebase.

10.3 Other Techniques

Packet hashing is also used by Chen et al. [18] for diag-
nosis purpose. Speci�cally, they use FPGA to compute
all the packet hashes in the backbone network and de-
liver them to next hops for diagnosis. Note that packet
hashing alone cannot defend against free-riding a�acks,
because ZF��� needs to ensure both server authenticity
and packet integrity. Middlebox enhancement include
both blackbox and whitebox approaches. Blackbox en-
hancement [30, 43, 38, 29, 46, 24, 17, 22, 40] analyzes
tra�c without decryption or understanding the tra�c.
Such approach, though being e�ective in solving their
own problem, cannot correctly zero-rate tra�c without
collaborating with the CP server. Whitebox approaches,
such as mcTLS [37] and APIP [36], enhance TLS proto-
col to convey information for the middlebox. As a com-
parison, they require server code modi�cations and face
backward compatibility problem in deployment. Cer-
ti�cate pinning [39, 19], or HTTP Public Key Pinning
(HPKP), is a security mechanism embedded in HTTP
header that defends against impersonation a�ack. Cer-
ti�cate pinning cannot prevent zero-rating a�acks, be-
cause it requires the collaboration from the client.

11 Conclusion
To mitigate such free-riding a�acks, in this paper, we
propose a secure, backward compatible, zero-rating
framework, called ZF���, which authenticates and ver-
i�es all the communications between the CP and the
client. ZF��� is formally veri�ed as secure against free-
riding a�acks. We implemented a prototype of ZF���
and our evaluation on two test beds, one mobile net-
work and the other WiFi network, shows that ZF��� is
lightweight, secure, and scalable.
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A Raw Trace Example Outputted by
ProVerif

In the appendix, we show �ve examples of raw traces
outpu�ed by ProVerif. Figure 7 shows a counter ex-
ample against response integrity for Network Cook-
ies Model; Figure 8 shows another counter example
trace against CP authenticity for IP whitelist based zero-
rating framework. Figure 9 shows a successful veri�ca-
tion example of ZF���. Figure 10 shows a counter ex-
ample trace if the ZF���’s packet hash is removed. Fig-
ure 11 shows a counter example trace if ZF��� uses a
weak hash function.



1. �e a�acker has some term cookie a�ribute 1498.
a�acker(cookie a�ribute 1498).
2. �e a�acker has some term cookie key 1497.
a�acker(cookie key 1497).
3. �e a�acker has some term cookie id 1496.
a�acker(cookie id 1496).
4. By 3, the a�acker may know cookie id 1496.
By 2, the a�acker may know cookie key 1497.
By 1, the a�acker may know cookie a�ribute 1498.
Using the function 3-tuple the a�acker may obtain
Network Cookie(cookie id 1496,cookie key 1497,cookie a�ribute 1498).
a�acker((cookie id 1496,cookie key 1497,cookie a�ribute 1498)).
5. �e a�acker has some term transferred server certi�cate 1501.
a�acker(transferred server certi�cate 1501).
6. We assume as hypothesis that a�acker(response data 1494).
7. By 6, the a�acker may know response data 1494.
By 5, the a�acker may know transferred server certi�cate 1501.
Using the function 2-tuple the a�acker may obtain
(response data 1494,transferred server certi�cate 1501).
a�acker((response data 1494,transferred server certi�cate 1501)).
8. �e message (cookie id 1496,cookie key 1497,cookie a�ribute 1498) that
the a�acker may have by 4 may be received at input {14}.
�e message (response data 1494,transferred server certi�cate 1501) that the
a�acker may have by 7 may be received at input {18}.
So event endResponseVerif(response data 1494) may be executed at {19}.
end(endResponseVerif(response data 1494)).

Figure 7: Counter example traces on verifying response
integrity for Network Cookies (TCP Connection)

1. �e a�acker has some term response Sequence Number 136.
a�acker(response Sequence Number 136).
2. �e a�acker has some term response ACK Number 135.
a�acker(response ACK Number 135).
3. �e a�acker has some term response Port Number 134.
a�acker(response Port Number 134).
4. �e a�acker has some term response IP 133.
a�acker(response IP 133).
5. By 4, the a�acker may know response IP 133.
By 3, the a�acker may know response Port Number 134.
By 2, the a�acker may know response ACK Number 135.
By 1, the a�acker may know response Sequence Number 136.
Using the function 4-tuple the a�acker may obtain
Server response(response IP 133,response Port Number 134,
response ACK Number 135,response Sequence Number 136).
a�acker((response IP 133,response Port Number 134,response
ACK Number 135,response Sequence Number 136)).
6. We assume as hypothesis that a�acker(server identity 150).
7. �e message response Sequence Number 136 that the a�acker may have by
1 may be received at input 24. �e message
(response IP 133,response Port Number 134,response ACK Number 135,
response Sequence Number 136) at 26 in copy server identity 150.
�e message
(response IP 133,response Port Number 134,response ACK Number 135,
response Sequence Number 136) that the a�acker may have by 6 may be
received at input 27.
So event endIPVerify(server identity 150) may be executed at 28 in session
cid 181.
A trace has been found.
RESULT inj-event(endIPVerify(server identity)) ==
inj-event(endIPVerify(server identity)) is false.
RESULT (even event(endIPVerify(server identity 150)) ==
event(endIPVerify(server identity 150)) is false.)

Figure 8: Counter example traces on verifying CP au-
thenticity for IP whitelist based zero-rating framework
(TLS Connection)

1. Starting query event(endResponseVerif h(keyedhash)) ==
event(beginResponseVerif h(keyedhash)) RESULT
event(endResponseVerif h(keyedhash)) ==
event(beginResponseVerif h(keyedhash)) is true.
2. Starting query event(endResponseVerif d(response data1,response data2,
response data3,response data4)) ==
event(beginResponseVerif d(response data1,
response data2,response data3,response data4)) RESULT
event(endResponseVerif d(response data1,response data2,response data3,
response data4)) ==
event(beginResponseVerif d(response data1,response data2,
response data3,response data4)) is true.
3. Starting query event(endintegrityVerif c(response data)) ==
event(begintegrityVerif c(response data)) RESULT
event(endintegrityVerif c(response data)) ==
event(begintegrityVerif c(response data)) is true.
4. Starting query inj-event(endClient(s,t,u,v 2565544,w)) ==
inj-event(beginClient(s,t,u,v 2565544,w)) RESULT
inj-event(endClient(s,t,u,v 2565544,w)) ==
inj-event(beginClient(s,t,u,v 2565544,w)) is true.
5. Starting query inj-event(endServerVerif(server identity)) ==
inj-event(beginServerVerif(server identity)) RESULT
inj-event(endServerVerif(server identity)) ==
inj-event(beginServerVerif(server identity)) is true.
6. Starting query not a�acker(data c) RESULT not a�acker(data c) is true.

Figure 9: Successful example traces on verifying all
properties of ZF��� (TLS Connection)

goal reachable: a�acker(response data4 759694) &&
a�acker(response data3 759695) && a�acker(response data2 759696) &&
a�acker(response data1 759697) -
end(endResponseVerif d(response data1 759697,response data2 759696,
response data3 759695,response data4 759694))
1. We assume as hypothesis that a�acker(response data1 759707).
2. We assume as hypothesis that a�acker(response data2 759708).
3. We assume as hypothesis that a�acker(response data3 759709).
4. We assume as hypothesis that a�acker(response data4 759710).
5. �e message response data1 759707 that the a�acker may have by 1 may be
received at input 178. �e message response data2 759708 that the a�acker
may have by 2 may be received at input 179. �e message
response data3 759709 that the a�acker may have by 3 may be received at
input 180. �e message response data4 759710 that the a�acker may have by 4
may be received at input 181. So event endResponseV-
erif d(response data1 759707,response data2 759708,response data3 759709,
response data4 759710) may be executed at 182.
end(endResponseVerif d(response data1 759707,response data2 759708,
response data3 759709, response data4 759710)).
A more detailed output of the traces is available with set traceDisplay = long.
new skCA creating skCA 759715 at 1
out(c, pk(skCA 759715)) at 3
new skS creating skS 759879 at 4
out(c, (HostInfoCA,HostInfoS,pk(skS 759879),
sign(H((HostInfoCA,HostInfoS,pk(skS 759879))),skCA 759715))) at 8
in(d, a) at 178 in copy a 759714
in(d, m1) at 179 in copy a 759714
in(d, a 759712) at 180 in copy a 759714
in(d, a 759713) at 181 in copy a 759714
event(endResponseVerif d(a,a 759711,a 759712,a 759713)) at 182 in copy
a 759714
�e event endResponseVerif d(a,a 759711,a 759712,a 759713) is executed. A
trace has been found.
RESULT
event(endResponseVerif d(response data1,response data2,response data3,
response data4)) == event(beginResponseVerif d(response data1,
response data2, response data3,response data4)) is false.

Figure 10: Counter example traces on verifying a weak
version of ZF���, i.e., removing control-plane keyed
hash (TLS Connection)



goal reachable: a�acker(response data 1521060) -
end(endintegrityVerif c(response data 1521060))
1. Using the function server id the a�acker may obtain server id.
a�acker(server id).
2. �e a�acker has some term server cipher suite 1521414.
a�acker(server cipher suite 1521414).
3. �e a�acker has some term server version 1521412.
a�acker(server version 1521412).
4. By 3, the a�acker may know server version 1521412.
By 2, the a�acker may know server cipher suite 1521414.
By 1, the a�acker may know server id.
Using the function 3-tuple the a�acker may obtain (server version 1521412,
server cipher suite 1521414,server id).
a�acker((server version 1521412,server cipher suite 1521414,server id)).
5. By 3, the a�acker may know server version 1521412.
By 2, the a�acker may know server cipher suite 1521414.
Using the function 2-tuple the a�acker may obtain (server version 1521412,
server cipher suite 1521414).
a�acker((server version 1521412,server cipher suite 1521414)).
6. �e message (server version 1521412,server cipher suite 1521414,
server id) that the a�acker may have by 4 may be received at input 10.
So the message (server version 1521412,client,client legacy session,
server cipher suite 1521414,server id,exp(g,X 1521421)) may
be sent to the a�acker at output 16.
a�acker((server version 1521412,client,client legacy session,
server cipher suite 1521414,server id,exp(g,X 1521421))).
7. By 6, the a�acker may know (server version 1521412,
client,client legacy session,server cipher suite 1521414,
server id,exp(g,X 1521421)).
Using the function 6-proj-6-tuple the a�acker may obtain exp(g,X 1521421).
a�acker(exp(g,X 1521421)).
8. By 6, the a�acker may know (server version 1521412,client,
client legacy session,server cipher suite 1521414,server id, exp(g,X 1521421)).
Using the function 3-proj-6-tuple the a�acker may obtain client legacy session.
a�acker(client legacy session).
9. By 6, the a�acker may know (server version 1521412, client,
client legacy session,server cipher suite 1521414, server id, exp(g,X 1521421)).
Using the function 2-proj-6-tuple the a�acker may obtain client.
a�acker(client).
10. By 3, the a�acker may know server version 1521412.
By 9, the a�acker may know client.
By 8, the a�acker may know client legacy session.
By 2, the a�acker may know server cipher suite 1521414.
By 1, the a�acker may know server id.
By 7, the a�acker may know exp(g,X 1521421).
Using the function 6-tuple the a�acker may obtain (server
version 1521412,client,client legacy session,server cipher
suite 1521414,server id,exp(g,X 1521421)).
a�acker((server version 1521412,client,client legacy sess
ion,server cipher suite 1521414,server id,exp(g,X 1521421))).
11. �e message (server version 1521412,server cipher suite
1521414) that the a�acker may have by 5 may be received at input 91.
33. By 32, the a�acker may know (server version 1521412,
server random 1521422,server cipher suite 1521414,exp(g,Y 1521423)).
Using the function 4-proj-4-tuple the a�acker may obtain exp(g,Y 1521423).
a�acker(exp(g,Y 1521423)).
34. By 32, the a�acker may know (server version 1521412,
server random 1521422,server cipher suite 1521414,exp(g,Y 1521423)).
Using the function 2-proj-4-tuple the a�acker may obtain
server random 1521422.
a�acker(server random 1521422).
35. By 3, the a�acker may know server version 1521412.
By 34, the a�acker may know server random 1521422.
By 2, the a�acker may know server cipher suite 1521414.
By 33, the a�acker may know exp(g,Y 1521423).
Using the function 4-tuple the a�acker may obtain (server version 1521412,
server random 1521422,server cipher suite 1521414,exp(g,Y 1521423)).
a�acker((server version 1521412,server random 1521422,
server cipher suite 1521414,exp(g,Y 1521423))).
event(endintegrityVerif c(a 1521424)) at 83 in copy a 1521437
�e event endintegrityVerif c(a 1521424) is executed.
A trace has been found.
RESULT event(endintegrityVerif c(response data)) ==
event(begintegrityVerif c(response data)) is false.

Figure 11: Counter example traces on a weak version of
ZF��� with a weak hash function (TLS Connection)


