
Withdrawing is believing? Detecting Inconsistencies between Withdrawal Choices
and Third-party Data Collections in Mobile Apps

Xiaolin Du∗¶, Zhemin Yang∗¶, Jiapeng Lin∗, Yinzhi Cao†, and Min Yang∗
∗ Fudan University, {xldu20, yangzhemin, linjp23, m yang}@fudan.edu.cn

† Johns Hopkins University, yzcao@cs.jhu.edu
¶ Co-first authors

Abstract—Popular privacy regulations such as General Data
Protection Regulation (GDPR) often allow consumers to with-
draw from providing data, e.g., the famous right to opt-out.
Modern computer software, e.g., mobile applications (apps), of-
ten provide withdrawal interfaces, which stop data collection—
e.g., from third-party ads and analytics libraries—to respect
users’ withdrawal decisions. While such interfaces are marked
as “withdrawal”, their correlated withdrawal decisions are of-
ten inconsistent with the apps’ actual data collection behavior,
especially from third parties, which is defined as withdrawal
inconsistency in the paper.

Prior works have either studied website withdrawal in-
consistency or privacy leaks of mobile apps. However, the
mobile withdrawal inconsistency problem is different yet more
complex than those in websites due to the diversity in mobile
withdrawal interface and the variety of private information.
At the same time, none of the existing works detecting privacy
leaks of mobile apps understand users’ withdrawal decisions
let alone correlate them with withdrawal behaviors.

In this paper, we design and implement a novel approach,
called MOWCHECKER, to detect mobile apps’ inconsistencies
in third-party data collection. The key insight is that with-
drawal choices should have either a control-flow dependency on
personal information flow or a data-flow dependency on with-
drawal APIs provided by third-party data collection libraries.
Our evaluation of MOWCHECKER on real-world Android
apps reveals 157 manually-confirmed, zero-day withdrawal
inconsistencies. We have responsibly reported them to app
developers and received 23 responses with two being fixed.

1. Introduction

Popular privacy regulations, such as General Data Pro-
tection Regulation (GDPR) [1] and California Consumer
Privacy Act (CCPA) [2], often allow consumers to exclude
themselves—or called withdraw—from providing personal
information, e.g., following the famous right to opt-out.
Software communities have hence reacted accordingly: For
example, mobile applications (apps) often provide with-
drawal interfaces to collect users’ choices to withdraw.
Then, mobile apps will stop third-party data collection, e.g.,

those powered by ads or analytics libraries like Firebase
Analytics [3], to respect users’ withdrawal decisions.

While intuitively simple, it is often complicated yet
challenging to withdraw from data collection in practice
especially when third-party libraries are involved. Specifi-
cally, after receiving users’ withdrawal choices, mobile apps
need to either stop third-party data collection themselves or
inform third-party libraries to stop collection. Many mobile
apps may forget to perform such stopping or informing
third-party, leading to an inconsistency in what the user
believes about withdrawing and what the app actually per-
forms. Such inconsistency is thus defined as third-party
withdrawal inconsistency of mobile apps, or for short with-
drawal inconsistency without ambiguity in the paper.

Prior works have studied withdrawal inconsistencies and
their implications on privacy. On one hand, one popular
research direction is to measure withdrawal inconsistencies
for websites. For example, Bui et al. [4] show that online
trackers embedded as part of websites may exhibit data
practices inconsistent with the host websites’ stated poli-
cies. Rather than focusing on inconsistencies, researchers
have also studied websites’ withdrawal choices (e.g., users’
perception) [5], [6], [7], [8], [9], [10]. However, mobile
withdrawals are different yet more complicated than the
counterparts on websites. More specifically, mobile with-
drawal choices are challenging to extract because they are
often embedded inside multiple user interfaces, e.g., via
Android activities. Then, mobile personal data is usually
more complex yet diversified involving those collected by
mobile sensors as compared with cookies, the usual target
on the World Wide Web.

On the other hand, prior works have studied privacy
leaks [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20] of mobile apps. For example, Pan et al. [13] studied
the correlation between user consents and mobile apps’
actual privacy behaviors. However, withdrawal behaviors
usually involve dedicated interfaces and special third-party
libraries. That is, none of the prior works can extract or
understand withdrawal decisions made by mobile users and
withdrawal behaviors of mobile apps, let alone study the
consistency between these two. To sum up, it remains an
open problem to study the mobile withdrawal inconsistency
problem despite existing research on mobile privacy and
website withdrawals.

mailto:xldu20@fudan.edu.cn, yangzhemin@fudan.edu.cn, linjp23@m.fudan.edu.cn, m_yang@fudan.edu.cn
mailto:yzcao@cs.jhu.edu

In this paper, we design and implement a novel ap-
proach, called MOWCHECKER,1 to detect inconsistencies
between mobile apps’ withdrawal choices and third-party
data collections. The key insight of MOWCHECKER is that
withdrawal choices made by users should have either a
control-flow dependency upon the personal information flow
or a data-flow to withdrawal APIs provided by third-party
data collection libraries. Therefore, MOWCHECKER detects
both withdrawal interfaces and data-flows related to personal
information and then makes correlations on control- and
data-flow dependencies to determine inconsistencies.

More specifically, MOWCHECKER has three steps:
(i) withdrawal interface detection, (ii) personal informa-
tion flow detection, and (iii) inconsistency check. First,
MOWCHECKER performs application layout analysis and
semantic checking to identify withdrawal options in mo-
bile apps. Second, MOWCHECKER statically discovers data-
flows related to personal information collection. Lastly,
MOWCHECKER correlates data collection behaviors with
withdrawal choices by mining their control and data de-
pendencies. Then, MOWCHECKER performs an ontology-
based consistency check to reconcile the different levels of
granularity between the withdrawal expectations and actions
and report inconsistencies.

Our evaluation shows that MOWCHECKER effectively
detects withdrawal inconsistencies with an overall preci-
sion of 82.86% and a recall of 90.63%. We also evaluate
MOWCHECKER on 25,725 most popular Android apps and
50,000 randomly selected long-tail apps collected from the
Google Play Store. MOWCHECKER finds 157 manually-
confirmed, zero-day2 withdrawal inconsistencies, which all
lead to violations of privacy regulations. We have responsi-
bly reported all these violations to app developers and so far
have received 23 responses and two violations have already
been fixed.
Contributions. We summarize our contributions as follows:

• We conducted the first systematic study on the under-
studied, withdrawal inconsistency problem in the mobile
ecosystem to reveal the inconsistencies between withdrawal
choices and third-party data collections.

• We built an automated yet effective analysis tool,
called MOWCHECKER, to detect inconsistencies between
mobile apps’ withdrawal choices and third-party data col-
lections.

• We manually verified real-world mobile withdrawal
inconsistencies identified by MOWCHECKER and notified
affected developers with gathered insights from their re-
sponses.

2. Overview

In this section, we first describe background related to
third-party data collection and withdrawal, and then present

1. MOWCHECKER is an abbreviation of Mobile Withdrawal Checker.
2. Borrowing a similar concept for vulnerabilities, “zero-day” here

means that the inconsistency is previously unknown to either app developers
or the general public.

Mobile App

Ad Library1

Ad Library2

First-Party Code

onCheckedChanged(boolean z){
SDK1.setDataCollectionEnabled(!z);
UserSettings.optoutStatus = z;
….

}

if (! UserSetting.optoutStatus) {
SDK2.setUserLocation(location);

}

➀ invoke third-party withdraw API

➁ set a guarding condition for data collection

Third-party Code

Guarding
Condition

Third-party Withdrawal APIs

setDataCollectionEnabled(boolean)

Third-party Data Collection APIs

setUserLocation(Location)

Figure 1: Methods to withdraw from third-party data collection.

our threat model and a motivating example.

2.1. Background

Privacy regulations often allow users to request service
providers to stop specific data practices from collecting their
personal information, thus called data withdrawal in the
paper. Examples of such data withdrawal include but are
not limited to the right to opt-out and the right to object.
For example, the Article 21 in GDPR supports the “right
to object”, which enables users to withdraw the processing
(i.e., collection, use, disclosure et al.) of their personal
information for direct marketing. Then, Article 7 allows
consumers to revoke consent for the processing of their
personal data beyond fulfilling a contractual obligation or
business transaction, which is also a form of exercising
data withdrawal. Being similar to but slightly different from
GDPR, CCPA specifically emphasized withdrawal of the
sale3 of personal information, which allows consumers to
request business to stop selling or sharing their personal
information to third parties.

2.2. Third-party Data Collection and Withdrawal

Third-party data collection is the practice of a third-party
library like ads and analytics, embedded as part of a mobile
app, to collect personal information at mobile devices and
send it to the third-party server for aggregation and analy-
sis. There are two types of third-party data collection and
corresponding withdrawal methods.
Withdrawal for Host-uncooperated Data Collection. One
popular third-party data collection [11], [12], [22], [23] is
that the third-party library inherits host app’s permission and
collects users’ sensitive data directly via mobile APIs with-
out further host cooperation beyond library integration. For
example, Firebase Analytics [3] will automatically collect
some user properties and usage data as long as they are
integrated in mobile apps [24].

The withdrawal of such data collection usually re-
quires the host app to inform the third-party library

3. Here the “sale” is defined as sharing consumer’s personal information
for monetary or other valuable consideration [21]

2

(a) Withdrawal interface of the Pacer
app.

$z0 = UserSetting.getUserAnalyticsStatus()
FlurryAgent.withDataSaleOptOut($z0)

5. BaseFragmentActivity.onCreate

$r1 = findViewById(R.id.switch_opt_out_ccpa)
$r2 = new DoNotSellSettingsFragment$1
$r1.setOnCheckedChangeListener($r2)
$z0 = PMSession.getUserDoNotSellFlag()
$r1.setChecked($z0)

2. DoNotSellSettingsFragment.onViewCreated

3. PrivacySwitchesActivity$1.onClick

$z0 = @parameter1
// update withdrawal choice to app server
SettingPrivacySync.invoke($z0)

4. UserSetting.getUserAnalyticsStatus
// get withdrawal choice from app server
$z0 = SharedPrefUtil.getUsageAnalyticStatus()
return $z0

<TextView android:text="App Usage Analytics"/>
<Switch android:id="@+id/usage_analytics_switch"/>

1. activity_privacy_switches.xml

View dependency
Data-flow dependency
Control-flow dependency

FlurryAgent.logEventWithParams(trackLabel, bundle)

8. FlurryEventLogger.logEventWithParams$r1 = new HashMap()
$r1.put("source","pacer_ad_web_page")
$r1.put("type", shareAdapter.shareType)
FlurryEventLogger.logEventWithParams($r1)

7. AdsWebActivity.startShare

source

$r1 = findViewById(R.id.usage_analytics_switch)
$r2 = new PrivacySwitchesActivity$1
$r1.setOnClickListener($r2)
$z0 = UserSetting.getUsageAnalyticStatus()
$r1.setChecked($z0)

2. PrivacySwitchesActivity.onCreate

sink Lack of withdrawal: Flurry

5. Flurry(Data Sale Only) 6. Firebase Flurry(Other Usage Data)

6. PMApplication.resetTrackingParameters

if(SharedPrefUtil.getUsageAnalyticStatus())
 FirebaseAnalytics.setAnalyticsCollectionEnabled(true)
else
 FirebaseAnalytics.setAnalyticsCollectionEnabled(false)

(b) Simplified code blocks of the Pacer app.

Figure 2: A motivating example of a zero-day withdrawal inconsistency in Pacer, a popular health tracker app.

via a pre-defined interface. Method ➀ in Figure 1
shows such an example: The app informs Ad Li-
brary1 to stop both the host-uncooperated and host-
cooperated data collection via invoking the withdrawal inter-
face SDK1.setDataCollectionEnabled(false).
Besides, the app can choose not to initialize the third-party
library to stop any data collection by this library.

Withdrawal for Host-cooperated Data Collection. The
other third-party data collection method is that the host
mobile app provides users’ personal information to a data
collection interface provided by the third-party library. For
example, the aforementioned Firebase Analytics library can
collect users’ in-app activity information via an API called
FirebaseAnalytics.logEvent(key, bundle).

While some libraries also support withdrawal of such
data collection via a pre-defined interface. The other popular
method adopted by host apps is the setting of a guarding
condition (e.g., as part of a if statement) to control data
collection. Method ➁ in Figure 1 shows that the host app
stops sharing user’s location to Ad Library2 via a guarding
condition UserSetting.optoutStatus.

2.3. Threat Model and A Motivating Example

There are three parties in our threat model: user, host
mobile app, and third-party data collection library. We as-
sume that users and third-party data collection libraries are
trusted. That is, as long as the host mobile app follows the
correct withdrawal practice provided by third-party libraries,
we assume that third-party libraries follow their promise to
stop data collection. It is an orthogonal problem to study
the behavior of third-party libraries, which involve server
activities.

At the same time, the host mobile app is potentially
either buggy (e.g., forgetting to withdraw data collection)
or malicious (e.g., intentionally missing the withdrawal).
We do not differentiate these two behaviors as they are
related to app developers’ intention. Instead, we focus on
the consequence, i.e., whether there exists an inconsistency
between withdrawal choices and behaviors.

A Motivating Example. Now we present a motivating
example with a zero-day withdrawal inconsistency. The
inconsistency locates in a popular health tracker app, called
Pacer, which has 10,000,000+ installs and an average rating
of 4.8 stars. Figure 2 describes the inconsistency. To ensure
the comprehensibility of the example, we have simplified the
class signatures and code logic in Figure 2(b). The Pacer app
provides a withdrawal option with a description called “App
Usage Analytics” in Figure 2(a). However, the withdrawal
option does not stop a third-party library, called Flurry, from
collecting users’ personal information such as gender, home
domain, and various in-app interactions, which leads to the
inconsistency and thus a potential violation of user’s right
under privacy regulations. More specifically, Figure 2(b)
shows that the data collection happens in Block 7, which
is not controlled by the withdrawal interface in Block 1.
Instead, the withdrawal action only stops the data collection
of another library Firebase Analytics and stops the data sale
of Flurry. For example, the Firebase Analytics is informed
in Block 6 to stop all analytic data collection, and Flurry in
Block 5 to stop data sale upon the withdrawal selection.

3. Methodology

In this section, we present our system architecture and
then the details of each component of MOWCHECKER.

3.1. Overall Architecture

The overall system architecture of MOWCHECKER is
shown in Figure 3. First, MOWCHECKER detects withdrawal
interfaces of a target mobile app using application layout
analysis and semantic checking. The collected interfaces are
represented as a triple of withdrawal option, personal data,
and data collection entity. Second, MOWCHECKER statically
detects data-flows related to personal information collection
of third-party libraries. The collected data-flows are repre-
sented as a triple consisted of flow path, personal data and
data collection entity. Lastly, MOWCHECKER checks the
consistency between data-flows and withdrawal option spec-
ified in the interface. Specifically, MOWCHECKER correlates
data-flows with withdrawal interfaces and then checks the

3

consistency between the flows and the option choice in the
interface.

Detection of the Motivating Example. Now we illus-
trate how MOWCHECKER detects this zero-day withdrawal
inconsistency using our motivating example in Figure 2
following the aforementioned three steps. Figure 2(b) shows
all the related control-, data-, and view-dependencies that are
useful for the detection.

First, MOWCHECKER identifies withdrawal options
from the mobile app by analyzing the structure and se-
mantics of layout files. Specifically, MOWCHECKER first
labels the Switch node in Block 1—i.e., a stateful Android
UI widget—as a candidate option. Then, MOWCHECKER
extracts its surrounding description texts (i.e.,“App Usage
Analytics”) and determines the candidate option to be an
withdrawal option since the phase “Usage Analytics” is
identified as a data sharing statement according to its se-
mantics.

Second, MOWCHECKER detects data-flows related
to third-party data collections considering both host-
uncooperated and cooperated data collection. Blocks
7–8 show an example of the host-cooperated data
collection of Flurry. The usage data (especially web
page information of ads in this case) collection of
Flurry, starts from Block 7, i.e., the source, and
flows to the third-party data collection API (i.e.,
FlurryEventLogger.logEventWithParams(...)),
i.e., the sink, in Block 8. MOWCHECKER takes the data
collection APIs as sinks, and then performs backward data-
flow analysis to identify such data-flows. MOWCHECKER
also found data-flows of other third-party libraries, such as
Firebase Analytics, via similar approaches.

Third, MOWCHECKER mines actual withdrawal behav-
iors and finally checks their consistency with the withdrawal
expectations. A challenge here is that app often caches user’s
withdrawal choice in local storage or app server for future
retrieval and use, and the one-way taint analysis usually
fails to capture the withdrawal choices taken from the data
storage. MOWCHECKER adopts bi-directional taint analysis
to identify variables or methods that can represent user’s
current withdrawal choice, called withdrawal fields.

On one hand, MOWCHECKER performs a forward
taint analysis. That is, MOWCHECKER first locates
the listener registration statement (Block 2). Then,
it starts from the parameter of corresponding event
callback method (Block 3), which can reflect user’s
newly changed withdrawal choice. The withdrawal
choice is finally updated to the app server inside the
method SettingPrivacySync.invoke(...).
On the other hand, MOWCHECKER takes the
parameter of setChecked(...) method as
the taint source of the backward taint propa-
gation. During the taint process, the methods
UserSetting.getUsageAnalyticStatus() and
SharedPrefUtil.getUsageAnalyticStatus()
are both labeled as withdrawal fields. The data-
flow dependency can also be identified in this

Android APP

Withdrawal
Interface
Detection

Withdrawal Interfaces
<option, data, entity>

Personal
Information Flow

Detection

Data Flows
<path, data, entity>

Withdrawal
Inconsistencies

Third-party Data
Collection APIs

Third-party
Withdrawal APIs

Inconsistency Check

Intention-to-
Behavior Check

Flow-to-choice
Correlation

Third-Party
Library

Figure 3: Overall architecture of MOWCHECKER.

process. For example, Block 5 and Block 6 show the
explicit and implicit data-flow dependency between
withdrawal choices and third-party withdrawal APIs (e.g.,
FirebaseAnalytics.setAnalyticsCollection-
-Enabled(...)).

After withdrawal choice identification, MOWCHECKER
finds guarding conditions to identify the control-flow de-
pendency between withdrawal choices and third-party data
collections.

3.2. Withdrawal Interface Detection

This module automatically detects withdrawal interfaces
of mobile apps. Our key observation for this module is that
mobile withdrawal interfaces are often stateful UI widgets
allowing users to switch between withdrawal and confirma-
tion and having texts around to describe what data collection
to withdraw Therefore, MOWCHECKER leverages two com-
ponents (i.e., Stateful Option Discoverer and Withdrawal
Semantic Checker) to identify withdrawal options in mobile
apps.
Stateful Option Discoverer. MOWCHECKER, or
particularly the stateful option discoverer, statically
extracts all stateful UI widgets inside a given APK file as
candidate withdrawal options. Specifically, MOWCHECKER
first disassembles the Android APK file using apktool [25]
and extracts its resource files, including layout files
in the res/layout directory, definition files for
PreferenceScreens in the res/xml/ directory and string
resources files in the res/values directory. The layout
files are in XML whose vocabulary describes different
UI widgets. For example, MOWCHECKER generates a
UI widget of switch type for an XML node <Switch
android:text="@string/ALLOW_TRACKING_STR">.
Moreover, the text descriptions for the set-
tings are in the widget node’s attributes (e.g.,
android:text="@string/ALLOW_TRACKING_STR") or in
those of other text widgets (e.g., TextView) nearby. Then,
MOWCHECKER checks widget types listed in Table 1 and
their text descriptions and extracts candidate withdrawal
options from the resource files. There are two things worth
noting here. First, widget types in Table 1 are summarized
manually based on all possible stateful Android UI widgets
as listed in Android developers documentations [26].
Second, some apps may dynamically generate widgets and
draw them in a view. The number of such widgets are

4

Table 1: Stateful Android UI widgets.

Widget Name Switch, SwitchCompat, SwitchPreference, SwitchPref-
erenceCompat, ToggleButton, CompoundButton, Ra-
dioButton, CheckBox, CheckBoxPreference, selector,
Spinner, Dialog

Table 2: Different forms of action words used by MOWCHECKER.

Type Word

Active Verb disclose, distribute, exchange, give, provide, rent, report,
sell, send, share, trade, transfer, transmit, access, collect,
gather, know, obtain, receive, save, store, get

Passive Verb disclosed, distributed, exchanged, given, provided, rent,
reported, sell, sent, shared, traded, transferred, transmit-
ted, accessed, got, collected, gathered, knew, obtained,
received, saved, stored

Noun/Gerund disclosure, distribution, exchange, giving, providing,
renting, report, sale, sending, sharing, trade, transferring,
transmission, access, collection, gathering, knowing, re-
ceiving, saving, storing

relatively small (14.29% out of 100 apps) based on our
manual inspection. We will consider them as our future
work.
Withdrawal Semantic Checker. MOWCHECKER checks
the semantics of each identified stateful UI option to fur-
ther decide whether it is used for withdrawal. Specifi-
cally, MOWCHECKER analyzes and decides whether the
descriptions of the candidate withdrawal options contain
data collection/sharing statements so that users can know
what data collection will be stopped if they choose to with-
draw. MOWCHECKER represents each data collection/shar-
ing statement as triples (withdrawal option, data object,
entity), i.e., the withdrawals of the collection of data object
by the entity. MOWCHECKER then identifies UI options
with data collection/sharing statements using patterns of
the grammatical structures between data objects, entities,
and different forms of action verb that represent sharing or
collection.

Then, MOWCHECKER analyzes each candidate option.
MOWCHECKER first uses a dependency parser [27] to trans-
form the description sentence into a dependency parsing
tree, which describes the grammatical connections between
different words. Because withdrawal descriptions usually
contain data collection/sharing phrases rather than sentences,
MOWCHECKER utilizes three manually-summarized gram-
matical patterns corresponding to three voices of the action
verb (i.e., active verb, passive verb and noun/gerund form)
as shown in Figure 4 for the analysis. MOWCHECKER
leverages different forms of action words (listed in Table 2)
as known anchors to locate the data objects and entities
by traversing the parsing tree. Then, MOWCHECKER filters
out the phrases irrelevant to privacy data objects by further
checking whether the identified data object is privacy-related
by calculating the semantic distance between the identified
data object noun phrase and a set of privacy keywords [18].
After the filtering, if the candidate option contains at least
one data collection/sharing phrases, MOWCHECKER anno-
tates it as an withdrawal option for further analysis.

pobj

my

personal

information

type:data

to

dative

nsubjpass

type:other

 nsubj

my

personal

information

type:data

dobj

sharing
 prep

type:action

my

personal

information

type:data

pobj
of

type:other

 prep

advertisers

type:entity

advertisers

type:entity

collect

type:action

sent

type:action

(b)(a)

(c)

pobj
advertisers

type:entity

with

type:other

Figure 4: Examples for different grammatical patterns. (a) Active
verb based: “do not let advertisers collect my personal information”
(b) Passive verb based: “do not let my personal information be
sent to advertisers” (c) Noun/Gerund based: “stop the sharing of
my personal information with advertisers”.

3.3. Personal Information Flow Detection

The personal information detection module statically
discovers data-flows for both host-uncooperated and coop-
erated data collections from third-party libraries. Each data-
flow is represented as a triple of flow path (source→sink),
personal data and data collection entity.
Identification of flow sink, personal data and collection
entity. MOWCHECKER uses a semi-automatic approach to
extract third-party data collection APIs from SDK’s Javadoc
or Javadoc-like documentations. Such APIs are used later
for sinks of flow path, and data entity as well as personal
data related to APIs are also recorded. Here are the detailed
procedures. Because such documentations tend to be highly
structured, with well specified API names, argument lists,
and descriptions, MOWCHECKER builds a parser to ex-
tract these information for each API. Next, MOWCHECKER
leverages regular matching to identify APIs whose names
or descriptions contains data collection/sharing verbs, and
extracts the data objects to be collected for these APIs.
Then, MOWCHECKER aligns these data objects with a set
of privacy keywords [18] by calculating their semantic sim-
ilarity to find out APIs related to privacy data collection.
MOWCHECKER records each identified API as a triple (API
signature, personal data, data collection entity). Finally,
we manually checked these APIs and removed the false
positives which are not used to share personal data to third-
party libraries (e.g., ErrorInfo.setLocation(...)
is used to set where the error occurs rather than the user’s
current location).
Flow path detection. MOWCHECKER detects two types of
flows for host-uncooperated and cooperated data collection.
On one hand, MOWCHECKER refers to existing approaches,
such as FlowDroid [14], to find personal information flows
of third-party libraries related to host-uncooperated data col-
lection in mobile apps. On the other hand, MOWCHECKER
takes third-party data collection APIs as sinks and performs

5

backward data-flow analysis to detect data-flows from the
host app to these sinks for host-cooperated data collection.
Finally, MOWCHECKER combines the two types of data-
flows to construct the full set of third-party libraries’ per-
sonal information flows.

Note that MOWCHECKER does not specify the sources
of these data-flows for host-cooperated data collection since
the data may come from user input or the app server, which
are hard to identify. That is, the purpose of MOWCHECKER
is to identify a path from first-party code to third-party
data collection APIs. The invoked data collection API can
indicate the collected personal data and data collection entity
for the data-flow.

3.4. Inconsistency Check

In this module, MOWCHECKER correlates personal in-
formation flows with withdrawal choices and then identifies
those flows that are controlled by the withdrawal choices.
Then, it performs an ontology-based consistency check to
reveal the inconsistencies between what the user believes
about withdrawing and what the app actually performs.

3.4.1. Flow-to-Choice Correlation. After mobile apps col-
lect users’ withdrawal choice, they need to either stop
third-party data collection themselves or inform third-party
libraries to stop collection. To detect such withdrawal be-
haviors, the key insight is that withdrawal choices should
have either a control-flow dependency on personal informa-
tion flow or a data-flow dependency on withdrawal APIs
provided by third-party data collection libraries. Therefore,
MOWCHECKER first identifies all variables representing
user’s current withdrawal choice in the mobile app. For
convenience, we refer to such variables as withdrawal field
in this work. Then, it performs data-flow and control-flow
analysis to mine the correlation between the withdrawal
fields and third-party personal information flows/withdrawal
APIs.

Specially, we observe that the host app often caches
user’s withdrawal choice in local storage or app server for
future retrieval and use. MOWCHECKER utilizes a multi-
source, bi-directional taint analysis approach to detect stored
withdrawal choices. As shown in Figure 5, MOWCHECKER
first identifies initial fields of the withdrawal option via
checking Android-specific methods. Then, MOWCHECKER
performs forward taint propagation to identify more with-
drawal fields in the app, which starts from the initial with-
drawal fields and ends at third-party withdrawal APIs or
some data storage operations (e.g., network request APIs).
The backward taint analysis is performed to complement
the identification of withdrawal fields. As the host app need
to fetch cached withdrawal field to set the checked state of
the withdrawal option (e.g., via setChecked(boolean)
method), MOWCHECKER takes the withdrawal fields ren-
dered in the withdrawal interface as taint source. Then
MOWCHECKER performs backward taint analysis to find
the path from app storage to the withdrawal interface and
labels all tainted values in the path as withdrawal fields.

App
Storage

get current withdrawal choice

Guarding
Condition

personal information flow

cached
withdrawal fieldsGuarding

Condition

third-party withdrawal API

set cached withdrawal choice

withdrawal option

initial
withdrawal fields

source taint propagation sink

Figure 5: Multi-source, bi-directional flow-to-choice correlation.

The taint propagation process is iteratively executed on
new identified withdrawal fields until it reaches a fix point.
After that, MOWCHECKER performs correlation analysis
based on the identified withdrawal fields by checking the
guarding conditions of data-flows and data-flows of third-
party withdrawal APIs.

Here, we present the details of (a) withdrawal taint
sources identification, (b) taint propagation and (c) corre-
lation analysis in this process.
(a) Withdrawal taint sources identification. For the for-
ward taint analysis, MOWCHECKER identifies three types
of initial withdrawal fields which can be used by app de-
velopers to get the current checked state of the withdrawal
option:

• Parameter of the event callback method. The call-
back mechanism for Android widget is the most common
way to obtain the newly changed state when users perform
some GUI actions. In detail, GUI actions such as user’s
clicks of a ToggleButton or Switch, are passed to app code
via the registered event callback methods, e.g., the method
onCheckedChanged(View, boolean) will be called
when the checked state of a compound button has changed.

To identify such withdrawal fields, MOWCHECKER ex-
tracts the registered callback methods for each withdrawal
option from both codes and layout files. Specifically, it
first checks the findViewById(...) invoke statements
in app code to locate view objects for each withdrawal
option. Then, it identifies all those event listener registra-
tion statements (e.g., setOnClickListener(...)) on
these view objects and then gets the callbacks by extracting
the name of argument class. For registration in layout files,
MOWCHECKER parses the app’s layout files and extracts
the values of those event attributes (e.g., onClick attribute).
Finally, MOWCHECKER identifies the target parameters of
the callback methods via parameter type and labels them as
initial withdrawal fields.

• State-retrieval method. Some stateful UI widgets pro-
vide state-retrieval methods for developers to get their cur-
rent state, such as the CheckBox.isChecked() method.

6

Similar to the first case, MOWCHECKER first locates the
view objects for each withdrawal option. Then it uses the
def-use chains to find the invoking statements of these state-
retrieval methods on the view objects and labels the defini-
tion boxes of these invoking statements as initial withdrawal
fields.

• Registered storage key. Specifically, Preference
widgets such as SwitchPreference support developers
to associate the checked state of the widget
with a SharedPreferences key by specifying the
android:key attribute in layout files. For example,
for the withdrawal widget <SwitchPreference
android:key="@string/PREF_OPTIN_KEY"/>,
developers can get the current state of the Switch widget
by calling SharedPreferences.getBoolean(
R.String.PREF_OPTIN_KEY). MOWCHECKER parses
the layout files and extracts the values of the android:key
attribute as initial withdrawal fields for each withdrawal
option.

For the source of the backward taint analysis,
MOWCHECKER focuses on Android methods which are
used to set the checked state of the UI widgets
(e.g., CheckBox.setChecked(boolean)), which are
manually collected from Android documentations. Then
MOWCHECKER parses the app code to find invoking state-
ments of these methods on the withdrawal view objects. The
parameters of the invoking statements are labelled as taint
sources to perform further backward taint analysis.
(b) Taint propagation. Starting from identified taint
sources, MOWCHECKER performs forward and backward
taint propagation to find all withdrawal fields in the app,
with both explicit data-flow and implicit data-flow depen-
dency considered. MOWCHECKER maintains a set called
FieldSet to store all tainted withdrawal fields and the
initial withdrawal fields are added to it at the beginning
of the taint process. Then it iteratively performs taint
propagation for each unvisited field in FieldSet to add
new tainted fields, until it reaches a fixed point. Specially,
MOWCHECKER utilizes two additional strategies to build
the link between data storage and retrieval operations.

On one hand, MOWCHECKER models some key-value
based data storage area such as SharedPreference. Specif-
ically, MOWCHECKER leverages the storage key to re-
cover the data-flow between data storage and retrieval
operations. For example, as shown in Figure 6, via in-
voking sh.edit().putBoolean("optInStatus",
z), the withdrawal field is put to SharedPreference us-
ing the key "optInStatus". To identify the withdrawal
fields fetched from the data store, MOWCHECKER records
the storage key and checks its references in the code to
identify data-retrieval operations from the data store using
this key. Thus the return value of the invoking statement
sh.getBoolean("optInStatus", true) will be
tainted.

On the other hand, we observe that developers usually
use pair methods such as setter/getter for data storage and
retrieval. In the shown example, setUserOptInStatus

Table 3: Pair methods patterns.

Setter Patterns set.*, put.*, save.*, store.*, write.*, update.*, upload.*

Getter Patterns get.*, restore.*, retrieval.*, read.*, is.*, has.*, load.*

and getUserOptInStatus are a pair of methods to
store and get user’s withdrawal choice. Therefore, dur-
ing the taint process, if MOWCHECKER finds the tainted
value is passed to a method matching the setter patterns
(e.g., setUserOptInStatus) summarized in Table 3,
it checks whether corresponding getter method exists in
the same class, and if exists, MOWCHECKER labels it as
withdrawal field as well as new taint source.
(c) Correlation analysis. For each withdrawal option,
MOWCHECKER records a set of correlated data-flows
(named as A-withdrawal), which stands for the actual
withdrawal behaviors of the withdrawal option. Based on the
identified withdrawal fields, MOWCHECKER correlates data-
flows with withdrawal choice in the following two ways.

• Identify guarded data-flows. Given a data-flow
fsource...fk...fsink, for any fk, we define a conditional
statement ce—at least one branch of which does not contain
fk—as a guarding condition. A data-flow is guarded by
the withdrawal choice if at least one withdrawal field is
used as its guarding condition. To check for guarded data-
flows, MOWCHECKER first collects all conditional state-
ments (IfStmt in Soot) where the condition is the ref-
erence of an withdrawal field. Then given a data-flow,
MOWCHECKER checks each conditional statements to see
whether it is a guarding condition for the data-flow. If a
guarding condition exists, MOWCHECKER labels the data-
flow as guarded and adds it to A-withdrawal.

• Identify correlated withdrawal APIs.
MOWCHECKER checks whether third-party withdrawal
APIs have data-flow or control-flow dependency on the
withdrawal fields. Note the third-party withdrawal APIs
are manually annotated from libraries’ documentations and
we also annotate the control scope (i.e., data collection
of which personal data can be stopped via this API) for
each withdrawal API. Based on these withdrawal APIs,
MOWCHECKER first locates invoking statements for each
of them and extracts its call path using constructed control-
flow graph. Then, if the parameter of the invoking statement
has been tainted in the taint process, it means there exists
data-flow dependency between withdrawal choice and
the withdrawal API. For the control-flow dependency,
MOWCHECKER checks whether an withdrawal field is used
as a guarding condition for invoking the withdrawal API.
In both ways, user’s withdrawal choice has been passed
to third-party library via the withdrawal API, and the
third-party library will stop corresponding data collections
as they declare. Thus, for each correlated withdrawal API,
MOWCHECKER adds the data-flows in its control scope to
A-withdrawal.

3.4.2. Intention-to-Behavior Consistency Check. In this
module, MOWCHECKER identifies which data-flows are

7

onCheckedChanged(View view, boolean z)

SharedPreferences sh = getPreferences(context);
sh.edit().putBoolean("optInStatus", z);

AnalyticsHelper.setEnableAnalytics(z);

setEnableAnalytics(boolean z)

this.optIn = z;
Branch.getInstance().disableTracking(!this.optIn);

trackEvent(String str, Bundle bundle)

boolean status = getUserOptInPreference();
if (status) {

FirebaseAnalytics.logEvent(str, bundle);
} guarded data-flow

source

setUserOptInPreference()

SharedPreferences sh = getPreferences(context);
boolean status = sh.getBoolean("optInStatus", true);

Bundle bundle = new Bundle;
bundle.putBoolean("status", status);

HttpClient.execute(bundle);

onCreateView(View view)

Switch s = findViewById(R.id.TrackingSwitch);

this.cacheOptIn= getUserOptInPreference();

s.setChecked(this.cacheOptIn);

getUserOptInPreference()

HttpResponse res = HttpClient.execute(…);
JSONObject data = JSONObject.fromObject(…);
boolean pref = data.getBoolean("optInPref");

return pref;

pair
methods

source

correlated withdrawal API

sink

Figure 6: Code example for the flow-to-choice correlation.

expected to be stopped (called E-withdrawal) for each
withdrawal option. Then, MOWCHECKER checks the consis-
tency between E-withdrawal and the controlled data-flows
(i.e., A-withdrawal) and reports inconsistencies.

In the Withdrawal Interface Detection module (see Sec-
tion 3.2), each withdrawal option is represented as an
withdrawal triple (option O, data object De, entity Ee).
MOWCHECKER refines the withdrawal triple into a set of
data-flows expected to withdraw. Such refinement is non-
trivial since the data object and entity declared in withdrawal
statements are usually coarse-grained, for example, for the
withdrawal statement “do not share my personal informa-
tion with advertisers”, MOWCHECKER checks which third-
party libraries integrated in this app are advertisers and
which data-flows are collecting personal information. To
address this problem, MOWCHECKER employs the data
ontology and entity ontology [18] to map coarse-grained
data objects and entities to fine-grained data-flows.

Recall that MOWCHECKER has identified all third-party
data-flows in the app, which covers the data collection of all
target third-party libraries and we call it F . Each data-flow in
F is represented as a triple (flow path p, data object d, entity
e). MOWCHECKER then maps the withdrawal triple (O, De,
Ee) to data-flows to get E-withdrawal by the following
rule: Let D represent the total set of data objects and E
represent the total set of data collection entities, respectively.
For each data-flow f ∈ F , f = (p, d, e) where d ∈ D, e ∈
E, if d ⊑o De and e ⊑o Ee, then f ∈ E-withdrawal. Here
x ⊑o y denotes that if x and y are synonyms or term x is
subsumed under the term y according to the data ontology
and entity ontology.

Finally, MOWCHECKER determines the withdrawal in-
consistencies for each withdrawal option by comparing the
actual withdrawal behaviors A-withdrawal with expected
withdrawal behaviors E-withdrawal. The withdrawal in-
consistency is formally defined and checked as follows:

Given E-withdrawal and A-withdrawal for an
withdrawal option, if ∃f ∈ E-withdrawal, f /∈
A-withdrawal, then the data-flow f is an unguarded data-
flow. For an withdrawal option O, if ∃f ∈ E-withdrawal,
f is an unguarded data-flow, then there exists withdrawal
inconsistency for the option O.

4. Implementation

Now we discuss the implementation of MOWCHECKER
in this section. MOWCHECKER is implemented in Python
and Java, containing 16,289 Lines of Code (LoC) in total,
excluding any third-party libraries, such as SpaCy depen-
dency parser [27] and Soot [28]. We then discuss details of
each component in MOWCHECKER.

First, we use apktool to decompile Android apk files.
We write 1,253 lines of Java codes to extract stateful
UI widgets as well as their description nodes from the
layout files extracted from decompiled apk files. Then,
MOWCHECKER uses pygtrans package [29], a Python wrap-
per of Google Translate API, to translate non-English texts
into English. For semantic checking, MOWCHECKER lever-
ages the SpaCy NLP library to parse and create the depen-
dency trees for withdrawal descriptions.

Second, we adopt FlowDroid, a precise and efficient
Java-implemented static analysis system, to discover per-
sonal information flows for host-uncooperated data collec-
tion. The backward data-flow analysis for host-cooperated
data collection is also based on the control-flow graph
constructed by FlowDroid.

Lastly, the flow-to-choice correlation module operates
on Jimple intermediate representation (IR) [30], a typed 3-
address IR suitable for optimization and easy to understand.
We use Soot framework [28] to transform an app into
Jimple codes, and write a Soot-based Java program in 10,510
lines of codes to perform the flow-to-choice correlation. For
consistency check, we write 3,239 lines of Python codes to
check the consistency between data-flows and withdrawal
options.

Then, we summarize the dataset produced and consumed
by each stage of MOWCHECKER as below.
Third-party Data Collection Libraries. We take the most
popular third-party data collection libraries as study target.
To identify them, we refer to the list of Most Used SDKs
For Android Mobile Apps on AppTopia [31]. We select the
top 200 most popular libraries since the remaining SDKs are
less popular and integrated in less than 10,000 Google Play
apps. Next, we exclude 88 libraries which are labeled as
Development Tool or Development Platform (e.g., Google
Gson SDK [32]), since they do not collect personal data.
The remaining 112 unique third-party libraries are then
used as the third-party library dataset for data-flow detection
and withdrawal inconsistency check, which covers a variety
of functional categories, such as analytics, advertising and
monetization.
Third-party Data Collection APIs. As discussed,
MOWCHECKER semi-automatically extracts third-party data
collection APIs as flow sinks. MOWCHECKER uses the
regex “[set|put|log|track|share|store|write|add|record|send]
(\W*\w*)*” for pattern matching. Then we manually check
these APIs and remove the false positives which are not used
to share personal data to third-party libraries. As a result,
we gathered 3,053 third-party data collection APIs for all
the 112 third-party data collection libraries.

8

Table 4: Examples of third-party withdrawal APIs.

API Params Description

setAppOptOut true You can enable an app-level opt out flag that will
disable Google Analytics across the entire app.

setCollectIMEI false Withdrawal of collection of IMEI.

setEnabled false You can enable and disable tracking with the
Adjust SDK using the setEnabled method.

updateCCPA-
-Status

false Updates the data-gathering consent status of the
user. If the state is true, the user has consented to
us gathering data about their device.

Third-party Withdrawal APIs. We manually annotate
withdrawal APIs from third-party library’s documentations,
including developer documentation, tutorial, API reference,
and Javadoc. We label an API as an withdrawal API if its
description states that it can be used to control the collection
of certain kinds of data. We then identify its control scope
according to its description and usage guide. Two privacy
professionals manually reviewed documentations for the 112
third-party libraries and finally identified 169 third-party
withdrawal APIs. Some examples of the withdrawal APIs
identified are listed in Table 4. These withdrawal APIs are
then used by the Inconsistency Check module to identify
actual withdrawal behaviors.

5. Evaluation

In this section, we run a series of experiments to evaluate
the performance of MOWCHECKER. We run all the exper-
iments on two Ubuntu 18.04 LTS 64-bit servers with Intel
Xeon Gold 5218, 2.30 GHz (40 cores/207GB memory, 40
cores/378GB memory respectively). Our evaluation answers
the following Research Questions (RQs):

• RQ1: What are MOWCHECKER’s precision, recall,
and accuracy in identifying withdrawal inconsistencies?

• RQ2: What is MOWCHECKER’s analysis time in
identifying withdrawal inconsistencies?

• RQ3: How many zero-day withdrawal inconsistencies
are reported by MOWCHECKER?

5.1. Dataset

We collected two datasets, totaling 75,725 apps, which
contain both high-profile and long-tail apps on the Play
Store. Specifically, we crawled the top free high-profile
apps in January 2023 from the Google Play store based
on the AppTopia statistics [33] in Germany and US region
respectively. In detail, we picked the top 500 under each
category, unless some categories do not have a full list of
500 apps. After removing duplicates, our crawler obtained
25,725 high-profile apps in total. To get long-tail apps,
our crawler randomly crawled free Android apps available
in the store from the Google Play store by using a list
of search keywords in the AOL Query Log dataset [34],
which resulted in one million apps. Then, we excluded those
already in the high-profile set and whose downloads are less

than 10,000, and randomly sampled 50,000 distinct apps
from the remaining apps as our long-tail app dataset.

Analysis Statistics. The analysis is performed in parallel
and has a timeout of one hour to analyze each app. The
sizes of apps range from 9.6KB to 563MB. Finally, we suc-
cessfully analyzed 70,364 (92.92%) apps, including 23,001
high-profile apps and 47,363 long-tail ones. The remaining
5,361 apps either ran out of time or failed to be analyzed
by Soot.

5.2. RQ1: Precision, Recall, and Accuracy

This research question answers MOWCHECKER’s effec-
tiveness in analyzing real-world Android apps, particularly
in terms of precision, recall, and accuracy. Because there
is no existing ground truth for such inconsistencies, we
manually compare existing withdrawal options and their
behavior via dynamic testing and reverse engineering and
label them as either consistent or inconsistent. Specifically,
we randomly sample 100 withdrawal options and ask two
computer science students for independent labeling. When-
ever they have a conflict, they resolve it by discussing it
with a security expert. Here is the detailed methodology. The
analysts first install the mobile app on real Android devices,
and then manually explore the app to interact with the target
withdrawal option. They monitor the app’s third-party data
collection behaviors and withdrawal behaviors by hooking
third-party data collection APIs and withdrawal APIs. If data
collection activities persist even after withdrawing, and the
corresponding withdrawal API is not invoked to halt data
transmission, the option is labeled as inconsistent. Since
some data collection activities are hard to trigger (e.g.,
collection of diagnostic reports when app crashes), analysts
investigate app’s code to reveal withdrawal behaviors as a
supplement. In addition, some apps cannot be dynamically
tested due to the need for special credentials, payment, area,
or device restrictions. In practice, both students unanimously
annotated all withdrawal options, spending around 80 hours
in total. Now let us describe the ground truth results in
Table 5. Among the 100 withdrawal options, 85 withdrawal
options are successfully inspected using this approach and
annotators cannot decide whether the rest 15 has consistent
withdrawals because of reasons mentioned above, such as
the requirement of special credentials or payment. 32 op-
tions out of 85 do not comply with users’ withdrawal choice
to stop corresponding third-party data collection, while 53
are consistent withdrawals.

Then, we measure the true positives (TP), false positives
(FP), true negatives (TN) and negatives (FN) false negatives
(FN) by comparing the results of MOWCHECKER with
manually annotated ground truth. We regard withdrawal
inconsistency as positive data, and consistent withdrawal as
negative data. TP indicates withdrawal options labelled by
both MOWCHECKER and human analysts as inconsistent,
while FP are labelled by MOWCHECKER to be inconsistent
but analysts determine them to be consistent. TN denotes
withdrawal options labelled by both MOWCHECKER and

9

Table 5: Manually-annotated Ground Truth. (Annotators cannot
decide on 15 withdrawal options because of various reasons such
as the requirement of payment, special credentials, and device.)

of Withdrawal
Options

of Consistent
Options

of Inconsistent
Options

of Undecidable
Options

100 53 32 15

Table 6: Overall performance of MOWCHECKER against the
Ground Truth.

TP TN FP FN Precision Recall Accuracy F1-Score

29 47 6 3 82.86% 90.63% 89.41% 86.57%

human analysts as consistent and FN are inconsistent with-
drawal options according to our ground truth but labelled as
consistent by MOWCHECKER.

Table 6 shows that MOWCHECKER achieves 82.86%
precision and 90.63% recall among 85 verifiable withdrawal
options. In detail, MOWCHECKER identifies 35 withdrawal
inconsistencies from the 85 withdrawal options while 29
of them are true positives. For the false positives, three
of them are caused by the incomplete identification of
withdrawal fields in apps, since some customized callbacks
or code obfuscation in mobile apps affect the integrity of
static taint propagation. Two of them are considered false
positives of identifying withdrawal options. For example,
the option is a redundant option in the app which will not
be presented to users under any circumstances. Thus, no
corresponding withdrawal behavior is performed behind this
option, which is justified. And the remaining one is due to
the misinterpretation of the withdrawal option. The main
reason for the three false negatives is that some mobile apps
have heavy code obfuscation, which causes MOWCHECKER
to fail to detect some third-party personal information flows.
In this case, the set of data-flows that are expected to be
stopped is empty while the actual situation is not, resulting
in the option being wrongly judged as consistent.

5.3. RQ2: Analysis Time Distribution

This research question evaluates the runtime perfor-
mance overhead of MOWCHECKER. In total, it took around
10 days for MOWCHECKER to finish all the tasks including
withdrawal interface detection, personal information flow
detection and inconsistency check on all the 75,725 apps.
Note that the analysis is performed in parallel and has a
timeout of one hour to analyze each app. Finally, only
2.09% of these apps ran out of time. In addition, if no with-
drawal option is detected in an app, the latter two modules
will not run, thus we evaluate the runtime performance of
MOWCHECKER on apps with withdrawal options detected.

Figure 7 shows the overall and break-down analysis time
distribution. Overall, the analysis time per app ranged from
17 seconds to about 44 minutes, with an average of 286
seconds and a medium of 178 seconds. Among the three
components, the personal information flow detection and
inconsistency check module consume more time since they

Overall Interface Detection Flow Detection Inconsistency Check

0

500

1000

1500

2000

2500

An
al

ys
is

Ti
m

e
(s

)

Figure 7: The analysis time distribution of MOWCHECKER.

Table 7: Statistics of withdrawal inconsistencies on the high-profile
and long-tail dataset.

Dataset # of
apps

of apps with
withdrawal options

of apps with
withdrawal inconsistency

% of withdrawal
inconsistency

High-profile 23,001 1,592 804 50.50%
Long-tail 47,363 2,243 710 31.65%
Total 70,364 3,835 1,514 39.48%

involve data-flow analysis which is usually time-consuming.
In most cases, MOWCHECKER can finish analysis in a
matter of minutes, while some outliers indicate that some
apps take longer, often due to their large size and high code
complexity. To summarize, the results indicate that each
component of MOWCHECKER is efficient, as is the overall
approach.

5.4. RQ3: Withdrawal Inconsistency Statistics

This research question answers the number of zero-
day withdrawal inconsistencies MOWCHECKER discovered
and their statistics. We first show the overall statistics of
MOWCHECKER’s detection results and then describe the
statistics of manually verified results excluding any false
positives. First, Table 7 shows that MOWCHECKER identi-
fied 1,514 apps with withdrawal inconsistencies, including
804 in high-profile apps (top 500 of each category in Google
Play) and 710 in long-tail apps. In detail, MOWCHECKER
locates 3,835 apps with withdrawal options in 70,364 real-
world mobile apps, while 39.48% of them incompletely or
failed to follow users’ choices to stop third-party data col-
lection. Our results indicate that although some developers
already realized the necessity to provide withdrawal options
to users, they may not effectively halt the corresponding
data collection in practice.

Second, we conduct a more in-depth analysis of reported
withdrawal inconsistencies to reveal further details about
this issue. Considering the potential impact of our tool’s
imperfect accuracy on the measurement study results, we
carefully selected the top 200 apps under each category
in our high-profile dataset for closer scrutiny and manually
verified any instances of withdrawal inconsistency in these
apps. Following this, we present the results of withdrawal
inconsistency statistics, MOWCHECKER identified 297 apps
with withdrawal inconsistencies out of a total of 6,740 apps.
Subsequently, we conducted a manual analysis of these apps,
and locate 157 withdrawal inconsistencies. The remaining

10

0 5 10
Number of third-party libraries

0.0

0.2

0.4

0.6

0.8

1.0
Pe

rc
en

ta
ge

 o
f w

ith
dr

aw
al

 o
pt

io
ns

0.00 0.25 0.50 0.75 1.00
Miss rate

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f w
ith

dr
aw

al
 o

pt
io

ns
Figure 8: Cumulative distribution function (CDF) of miss count
and miss rate of third-party libraries.

apps cannot be analyzed for various reasons such as the
requirement of device by a specific vendor.

Degree of Inconsistency. Some withdrawal options may
involve multiple third-party libraries, and in case of incon-
sistency, they may only stop the data collection of some of
these libraries, or even none at all. We then assess the incon-
sistency level of withdrawal options for third-party libraries,
specifically analyzing the extent to which the withdrawal
behavior of the target libraries is absent. Figure 8 illustrates
the cumulative distribution function (CDF) of missed third-
party libraries for withdrawal options, as well as the miss
rate. Surprisingly, although over 75% of the withdrawal
options involve fewer than three third-party libraries, some
apps have more than 10 third-party libraries that are not
withdrawn. Further investigation of these withdrawal options
reveals that they often have overly broad definitions without
sufficient clarification (e.g., “do not sell personal informa-
tion”). Consequently, in practice, these options frequently
fail to prevent personal data from being shared with multiple
third parties.

Additionally, we find that some options have a miss rate
of 100%, which means the app does not stop any third-
party data collection as expected. Our further examination
finds some of them are deceptive since they do nothing other
than save the user’s withdrawal status for rendering the UI,
while some presented as seemingly optional actually require
mandatory consent. We provide a few case studies of such
violations in Section 6.

Affected Personal Data. Personal data that continues
to be collected by third parties, even after the user has
explicitly refused, may be considered illegal data collection
under regulations. Figure 9 shows the distribution of such
third-party data collection. We then analyze the affected
personal data and third-party libraries to show the severity
of such withdrawal inconsistencies.

We find that the most affected personal data type is usage
data, which has not been well studied in prior works but may
pose significant privacy risks to users. Such data mainly
comes from user interactions with the app and can be used
to track user behavior and preferences. For example, user’s
browsing and search history in a news&magazines app may
reveal users’ interests as well as some sensitive information
such as political beliefs. Mobile apps may share such in-
formation with third-party libraries for targeted advertising
or in exchange of some other valuable services, which can
be invasive and unwanted for users. While these data is

usage data Firebase Analytics

Facebook Audience Network

Mixpanel
Flurry Analytics

crash data

Firebase Crashlytics

Google Analytics

ip address
Firebase Performance Monitoring

cookie

android id
AppsFlyer

AppLovin

Adjust

location

InMobi

ssid

nationality

browsing history
consuming history

imei
imsi
telephone number

Figure 9: Distribution of unguarded third-party data-flows.

not protected by Android permissions, users lose the real
control over this kind of privacy in the case of withdrawal
inconsistency, and thus face serious privacy risks.

Affected Third-party Libraries. The withdrawal in-
consistencies result in third-party libraries collecting and
processing user data without the user’s consent, which po-
tentially violates the relevant requirements for user consent
in laws and regulations such as GDPR. This exposes these
third-party libraries to the risk of being punished by regula-
tions. From the statistics, it is found that withdrawal incon-
sistencies mainly involve Analytics libraries (e.g., Firebase
Analytics) and Advertising libraries (e.g., InMobi). These
libraries are widely used in mobile apps and have been
shown to collect and process large amounts of user data [12].

6. Case Study

In this section, we illustrate several case studies for
the withdrawal inconsistencies reported by MOWCHECKER,
to better understand their possible causes. Consistent with-
drawals are usually challenging to achieve, as they depend
on the proper coordination between the host app and third-
party libraries. During our validation process, we observed
different types of withdrawal inconsistency, and we illustrate
each one with a representative case here.
Deceptive Withdrawal. MAPS.ME, a popular Map app
with 50M+ downloads, provides an withdrawal option for
users to withdraw the collection of crash data, with a
description as “Crash report. We may use your data to
improve MAPS.ME experience”. However, MOWCHECKER
finds that the app still collects such crash data despite an
withdrawal choice from users. Specifically, MAPS.ME only
changes the UI state but does not perform any actual actions
to stop data collection. The app does provide a wrapper
method (i.e., isCrashlyticsEnabled()) to get the current with-
drawal choice, but the method is not used.
Incomplete Withdrawal. Work Log is a popular Productiv-
ity app with 1M+ downloads and an average rating of 4.7.
MOWCHECKER detects that the app provides an withdrawal
option called “Google Analytics”. The option stops sharing
customized usage data with Firebase Analytics via guarding
its data-flows. However, the automatic data collection of
Firebase Analytics [24] is not stopped since the app does
not call the provided withdrawal API. During our developer

11

notification, the app developers stated that they do not know
such automatic data collection by third-party libraries and
thus are not aware of the inconsistency.

Withdrawal Scope Mismatch. Pacer Pedometer & Step
Tracker, a Health and Fiteness app with 10M+ downloads,
i.e. our motivating example, has an withdrawal option with
a description as “App Usage Analytics”. In this app, Fire-
base Analytics and Flurry Analytics are both integrated
to collect usage data. When users choose to withdraw,
MOWCHECKER finds that data collection of Firebase Ana-
lytics is disabled via calling the withdrawal API. However,
the withdrawal of Flurry is not appropriately enforced,
which has a scope mismatch with its stated withdrawal
description. Specifically, the app calls an withdrawal API
of Flurry, called withDataSaleOptOut(true), which
only prevents Flurry from sharing data with other parties,
but not collecting user data from their device [35].

7. Developer Notification

We have responsibly notified the developers of affected
mobile apps about all withdrawal inconsistencies that have
been manually validated. This serves two main objectives:
first, to inform them of the identified withdrawal inconsis-
tencies and enable them to address this issue; and second,
to gain insights into the underlying reasons that caused the
withdrawal inconsistency in the first place.

We are aware of the ethical concerns when conducting
the developer notification. During the notification process,
we emphasize that we will not collect any personal infor-
mation from developers. We also inform developers of the
purpose of the study and follow best practices established by
prior works [36], [37], [38] allowing developers to withdraw.
This approach ensures that our research is conducted in an
ethical and transparent manner, while also respecting the
privacy and autonomy of the developers involved.

7.1. Notification Campaign

To notify the affected app developers, we extracted the
email addresses they submitted to Google Play. To ease
the overhead of handling our reports, we briefly explained
the withdrawal inconsistency problem and put details in
an attached report. Besides, three questions were asked,
including if they are aware of such inconsistency, if they
know how to withdraw third-party data collection, and what
their plans are to remedy this problem or any proposal for
support (see Appendix A for the email template).

We performed a notification campaign to inform the
affected app developers, which was finished before March
23, 2023. Overall, 157 unique report emails were sent and
170 of them were successfully sent. The failed ones are
due to various reasons such as invalid email addresses and
inboxes of the recipients being full.

7.2. Developer Response

In total, 66 unique responses were received, where 43
of them are automated replies. Among the remaining 23
manual responses, five confirmed our report along with
feedback towards our questions. One of them acknowledged
the inconsistency and mentioned that they were developing
a new compliant version. Two responses said they were not
aware of this issue but promised to investigate and fix it. In
addition, the rest two responses said that they had already
fixed the withdrawal inconsistency issue in their latest ver-
sion of the app. Note that the response rate was relatively
low. We notice that one possible reason can be the consider-
ation of protecting certain business secrets or their internal
security restrictions. For instance, two of the app developers
investigated our report but said that they were unable to
disclose any information regarding our queries. Most of the
manual responses neither confirmed nor denied our report,
but said “We’ll forward this report to the appropriate team”
or stated that they required further investigation within their
respective companies. Note that there may be multiple back-
and-forth processes during the notification campaigns, as
app developers may require additional details and support
to address the withdrawal inconsistency problem.

8. Discussion & Limitations

In this section, we discuss some issues related to the
implementation and evaluation, as well as the limitations of
our tool.
Third-Party Data Collection Libraries. In the current
implementation, we have focused solely on withdrawal
inconsistencies related to the top 200 popular third-party
libraries, due to the impracticality of manually annotating
withdrawal APIs for all third-party libraries. However, this
approach is still reasonable and has a negligible impact on
the tool’s results. On the one hand, we have covered the
mainstream third-party libraries, and the remaining libraries
are less popular, with the 201st ranked SDK integrated into
fewer than 10,000 Google Play apps. On the other hand, our
tool can be easily extended, as users can add new third-party
libraries through the configuration file when needed.
Roles in Data Processing. The GDPR establishes two
roles for various parties: the Data Controller and the Data
Processor, which are akin concepts to Business and Service
Provider as defined in CCPA. The Data Controllers are par-
ties that determine the purposes and means of the processing
of personal data, while the Data Processors process data
on behalf of the Data Controllers. As per the definitions
provided by the GDPR, the responsibility for stopping the
processing of personal data lies with the Data Controllers,
but not with the Data Processors such as Firebase Analytics.
In an application, a third-party library may serve as a Data
Processor. However, for the withdrawal interface is provided
by the Data Controller, which is the first party app code
instead of the Data Processor, such as third-party libraries.
In other words, a user is asking the Data Controller instead

12

of the Data Processor to withdraw data processing. This
aligns with “Right to Object to Processing of Personal Data”
in Article 21 of GDPR. Thus, MOWCHECKER reports a
withdrawal inconsistency whatever the roles of third party
libraries are.
False Positives. Due to the limitations of static analysis,
MOWCHECKER has some false positives. For instance,
MOWCHECKER may overlook some apps’ withdrawal so-
lutions due to factors such as Java reflection, code obfus-
cation, or inadequate pattern coverage, resulting in false
positives. Nonetheless, our evaluation results indicate that
MOWCHECKER maintains practical precision. While dy-
namic analysis may seem like a more intuitive method for
detecting withdrawal inconsistencies, it is not applicable in
our study for the following reasons. Firstly, withdrawal op-
tions are deeply concealed within apps, making it difficult to
trigger them through dynamic testing. Secondly, the trigger
conditions for third-party data collections are complex, and
it is challenging to guarantee adequate coverage.
False Negatives. Since we only consider withdrawal options
defined in layout files, the withdrawal options presented
in WebView or with dynamically-retrieved description texts
are not detected by MOWCHECKER, potentially resulting
in the omission of some violations. Assessing end-to-end
false negatives for withdrawal inconsistencies is challeng-
ing. On the one hand, some withdrawal options may only
appear under specific conditions (e.g., in certain regions),
making it difficult to establish a ground truth for identifying
withdrawal options. On the other hand, some non-reported
withdrawal options may involve code in other languages
such as JavaScript, which differs significantly from app-
customized withdrawal mechanisms, making it difficult to
evaluate their consistency. Due to these limitations, we only
evaluate false negatives of withdrawal inconsistencies for
reported withdrawal options. Therefore, our work only re-
vealed the “lower bound” of the withdrawal inconsistencies
in the wild.
Scalability of MOWCHECKER. The detection accuracy of
MOWCHECKER may be affected by the Android UI widgets,
Source-Sink APIs and the withdrawal APIs. MOWCHECKER
detects withdrawal interfaces with stateful Android UI wid-
gets which are less prone to becoming outdated. The manual
curation of all possible Android UI widgets is a one-time
effort that is solely related to Android versions. Our analysis
reveals that the types of Android UI widgets have stayed
the same from Version 4.2 until the present, spanning an
11-year period. In addition, MOWCHECKER inherits the
Source-Sink APIs provided by FlowDroid, which may affect
the accuracy since they are outdated. Therefore, one future
work revolves around the updating of outdated APIs used
in MOWCHECKER. Finally, the withdrawal APIs used in
MOWCHECKER may also need to be updated regularly.
Manual annotation requires an average of only 15 minutes
per third-party library.
Third-party Withdrawal Frameworks. We notice that
some mobile apps utilize third-party withdrawal frame-
works, such as the mobile Consent Management Platform

(CMP) SDK, to offer withdrawal interfaces. These interfaces
are commonly defined in WebView or configuration files,
which are not captured by our current solution. Moreover,
the efficacy of these withdrawal interfaces depends on the
implementation of the withdrawal framework, rather than the
mobile app that is the focus of our research. Therefore, we
consider this to be a potential area for future investigation.

9. Related Works

In this section, we begin by presenting related works
on privacy regulation compliance analysis in mobile apps.
Next, we discuss existing research on mobile privacy leaks.

9.1. Privacy Regulation Compliance

With more and more privacy regulations (e.g., GDPR
and CCPA) went into effect, lots of works have made efforts
to study the privacy regulation compliance in the wild.
Opt-out related study. When considering data withdrawal,
previous studies mainly focused on the right to opt-out with
the analysis on the existence and usability of opt-out options
on websites, while little research has been done to measure
the violation of withdrawals in mobile apps. Specifically,
lots of works [5], [6], [7], [9], [10], [39], [40], [41] paid their
attention to cookie notices, which is the mainstream way
for websites to inform users about their data practices and
enable users to opt-out/opt-in. To extract opt-out options,
Sathyendra et al. [42] and Bannihatti et al. [43] made efforts
to automatically extract opt-out statements from website
privacy policies. They based on the observation that the
privacy policy text describing opt-out options often includes
hyperlinks and trained a logistic regression classifier to
automatically detect opt-outs in privacy policy.

One popular research direction—which is closely re-
lated to our work—is to measure opt-out inconsistencies
for websites. Bui et al. [4] showed that online trackers
embedded as part of websites may exhibit data practices
inconsistent with the host websites’ stated opt-out policies.
Sanchez et al. [6] evaluated the effectiveness of rejecting
cookie notices by comparing the number of cookies before
and after the user rejected them and found rejecting tracking
is often ineffective. Moreover, Matte et al. [41] focused
on cookie banners implemented by Consent Management
Providers (CMPs), who respect IAB Europe’s Transparency
and Consent Framework (TCF) [44] to collect and dissem-
inate user consent to third parties. They inspected 1,426
websites that use CMPs and found that 5% of them store a
positive consent even if the user has explicitly opted out.

While these works mainly focus on withdrawal of cookie
tracking on websites, mobile withdrawal options are more
challenging to extract because they are often embedded
inside multiple user interfaces, e.g., via Android activities.
Then, mobile personal data is usually more complex yet
diversified involving those collected by mobile sensors as
compared with cookies.
Regulation violations in mobile apps. A line of works
study legislation violations of mobile apps after GDPR and

13

CCPA went into effect. In particular, Nguyen et al. [36]
performed a large-scale measurement study on Android apps
in the wild to understand the current state of the violation
of GDPR’s explicit consent. Santhanam et al. [45] worked
to detect app user information left on servers after account
deletion, which checked app’s compliance of the “right to
be forgotten”. Kollnig et al. [46] revealed the absence of
consent to third-party tracking in Android apps. Nguyen et
al. [47] and Koch et al. [48] performed large-scale studies
into consent notices of third-party tracking in Android apps
in the wild to understand the current practices and the
current state of GDPR’s consent violations. While they
mainly focused on consent notices that pop up on app’s start
activity, we are concerned with withdrawal options which
are orthogonal directions.

9.2. Mobile Privacy Leaks

Many works detected privacy collection or leakage in
mobile apps as well as integrated third-party libraries using
static program analysis [14], [49], [17], [20], [11], [23], [22]
or dynamic analysis [15], [16], [50], [51]. More recently,
another line of works works assessed whether an app’s data
practice (e.g., data collection and sharing with third-party) is
consistent with what is disclosed to users, either presented to
users in app UI or in its privacy policy [52], [53], [13], [54],
[55], [56], [18], [19]. They leveraged natural-language pro-
cessing (NLP) techniques, such as patterns of the grammat-
ical structures to extract sharing and collection statements
from app’s descriptions or privacy polices [55], [19], [56],
or they extract semantics from texts and images in UI to
infer user’s intention [13], [54]. PoliCheck [19] performed
an entity-sensitive flow-to-policy consistency analysis while
builds on top of PolicyLint [18] to identify data collection
and sharing statements. To identify data collection behavior,
most of these works only checked data-flows of permission-
based privacy, while GUILeak [56] paid attention to the
flow-to-policy consistency for user-input data.

Being different from them, MOWCHECKER checks the
consistency between withdrawal choices and third-party data
collections, where user intention presented in the UI and
actual withdrawal behavior both need to be considered.
However, withdrawal behaviors usually involve dedicated
interface and special third-party libraries. More importantly,
we pay more attention to reveal the control or data-flow
dependency between withdrawal choices and third-party
data-flows, which faces additional challenges. That is, none
of prior works can understand withdrawal decisions made
by mobile users and withdrawal behaviors of mobile apps let
alone study the consistency between user choice and mobile
apps’ withdrawal behaviors.

10. Conclusion

Many mobile apps provide withdrawal interfaces for
users to exercise their withdrawal rights. However, some
apps still transmit data to third-party libraries even when
users have explicitly withdrawn data collection via such

interfaces, which is defined as an withdrawal inconsistency.
In this paper, we design and implement a tool, called
MOWCHECKER, to automatically identify withdrawal in-
consistencies in mobile apps. Our insight is that withdrawal
interfaces have control- or data-flow dependencies with the
actual data collection behaviors. Then, our evaluation of
MOWCHECKER on real-world Android apps reveals 157
manually-confirmed, zero-day withdrawal inconsistencies.
Our work shows the urgent need for better collaboration
between third-party libraries and mobile apps to respect
users’ withdrawal choices. We hope that MOWCHECKER
will help future researchers as well as developers to better
protect users’ withdrawal rights and fill the gap between law
enforcement and software development.

11. Acknowledgments

We would like to thank the anonymous review-
ers for their insightful comments that helped improve
the quality of the paper. This work was supported in
part by the National Key Research and Development
Program (2021YFB3101200), National Natural Science
Foundation of China (62172104, 62172105, 61972099,
62102093, 62102091), and National Science Foundation
(CCF2317185). Zhemin Yang was supported in part by
the Funding of Ministry of Industry and Information Tech-
nology of the People’s Republic of China under Grant
TC220H079. Dr. Yinzhi Cao was supported in part by Johns
Hopkins Catalyst Awards. Min Yang is the corresponding
author, and a faculty of Shanghai Institute of Intelligent
Electronics & Systems and Engineering Research Center of
Cyber Security Auditing and Monitoring.

References

[1] T. E. Union. (2022) General data protection regulation(gdpr). https:
//gdpr.eu/.

[2] C. D. of Justice. (2022) California consumer privacy act (ccpa). https:
//www.oag.ca.gov/privacy/ccpa.

[3] Google. (2022) Firebase analytics. https://firebase.google.com/docs/
analytics.

[4] D. Bui, B. Tang, and K. G. Shin, “Do opt-outs really opt me out?”
in Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, 2022, pp. 425–439.

[5] D. Bollinger, K. Kubicek, C. Cotrini, and D. Basin, “Automating
cookie consent and gdpr violation detection,” in 31st USENIX Security
Symposium (USENIX Security 22), 2022, pp. 2893–2910.

[6] I. Sanchez-Rola, M. Dell’Amico, P. Kotzias, D. Balzarotti, L. Bilge,
P.-A. Vervier, and I. Santos, “Can i opt out yet? gdpr and the global
illusion of cookie control,” in Proceedings of the 2019 ACM Asia
conference on computer and communications security, 2019, pp. 340–
351.

[7] X. Hu and N. Sastry, “Characterising third party cookie usage in the
eu after gdpr,” in Proceedings of the 10th ACM Conference on Web
Science, 2019, pp. 137–141.

[8] H. Habib, Y. Zou, A. Jannu, N. Sridhar, C. Swoopes, A. Acquisti,
L. F. Cranor, N. Sadeh, and F. Schaub, “An empirical analysis of
data deletion and opt-out choices on 150 websites,” in Fifteenth
Symposium on Usable Privacy and Security (SOUPS 2019), 2019,
pp. 387–406.

14

https://gdpr.eu/
https://gdpr.eu/
https://www.oag.ca.gov/privacy/ccpa
https://www.oag.ca.gov/privacy/ccpa
https://firebase.google.com/docs/analytics
https://firebase.google.com/docs/analytics

[9] C. Utz, M. Degeling, S. Fahl, F. Schaub, and T. Holz, “(un) informed
consent: Studying gdpr consent notices in the field,” in Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communi-
cations Security, 2019, pp. 973–990.

[10] M. Degeling, C. Utz, C. Lentzsch, H. Hosseini, F. Schaub, and
T. Holz, “We value your privacy... now take some cookies: Measuring
the gdpr’s impact on web privacy,” arXiv preprint arXiv:1808.05096,
2018.

[11] X. Liu, J. Liu, S. Zhu, W. Wang, and X. Zhang, “Privacy risk analysis
and mitigation of analytics libraries in the android ecosystem,” IEEE
Transactions on Mobile Computing, vol. 19, no. 5, pp. 1184–1199,
2019.

[12] A. Razaghpanah, R. Nithyanand, N. Vallina-Rodriguez, S. Sundare-
san, M. Allman, C. Kreibich, P. Gill et al., “Apps, trackers, privacy,
and regulators: A global study of the mobile tracking ecosystem,” in
The 25th Annual Network and Distributed System Security Symposium
(NDSS 2018), 2018.

[13] X. Pan, Y. Cao, X. Du, B. He, G. Fang, R. Shao, and Y. Chen,
“FlowCog: Context-aware semantics extraction and analysis of in-
formation flow leaks in android apps,” in 27th USENIX Security
Symposium (USENIX Security 18), 2018, pp. 1669–1685.

[14] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint analysis
for android apps,” Acm Sigplan Notices, vol. 49, no. 6, pp. 259–269,
2014.

[15] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: an information-
flow tracking system for realtime privacy monitoring on smart-
phones,” ACM Transactions on Computer Systems (TOCS), vol. 32,
no. 2, pp. 1–29, 2014.

[16] M. Sun, T. Wei, and J. C. Lui, “Taintart: A practical multi-level
information-flow tracking system for android runtime,” in Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, 2016, pp. 331–342.

[17] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, “Iccta: De-
tecting inter-component privacy leaks in android apps,” in 2015
IEEE/ACM 37th IEEE International Conference on Software Engi-
neering, vol. 1. IEEE, 2015, pp. 280–291.

[18] B. Andow, S. Y. Mahmud, W. Wang, J. Whitaker, W. Enck, B. Reaves,
K. Singh, and T. Xie, “Policylint: Investigating internal privacy policy
contradictions on google play,” in 28th USENIX Security Symposium
(USENIX Security 19), 2019, pp. 585–602.

[19] B. Andow, S. Y. Mahmud, J. Whitaker, W. Enck, B. Reaves, K. Singh,
and S. Egelman, “Actions speak louder than words: Entity-sensitive
privacy policy and data flow analysis with policheck,” in 29th
USENIX Security Symposium (USENIX Security 20), 2020, pp. 985–
1002.

[20] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck, “Appcon-
text: Differentiating malicious and benign mobile app behaviors using
context,” in 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, vol. 1. IEEE, 2015, pp. 303–313.

[21] B. C. L. P. LLP. (2022) Definitions of ccpa. https://ccpa-info.com/
home/1798-140-definitions/.

[22] R. Stevens, C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Inves-
tigating user privacy in android ad libraries,” in Workshop on Mobile
Security Technologies (MoST), vol. 10, 2012, pp. 195–197.

[23] S. Demetriou, W. Merrill, W. Yang, A. Zhang, and C. A. Gunter,
“Free for all! assessing user data exposure to advertising libraries
on android.” in The 23th Annual Network and Distributed System
Security Symposium (NDSS 2016), 2016.

[24] Google. (2022) Automatically collected events. https://support.
google.com/firebase/answer/9234069.

[25] iBotPeaches. (2020) Apktool - a tool for reverse engineering android
apk files. https://github.com/iBotPeaches/Apktool.

[26] Google. (2021) Android developer documentation. Google. [Online].
Available: https://developer.android.com/docs/

[27] M. Honnibal and I. Montani, “spacy: Industrial-strength natural lan-
guage processing in python,” https://spacy.io/, 2017, accessed on 25
March 2023.

[28] P. Lam, E. Bodden, O. Lhoták, and L. Hendren, “The soot framework
for java program analysis: a retrospective,” in Cetus Users and
Compiler Infastructure Workshop (CETUS 2011), vol. 15, no. 35,
2011.

[29] P. community, “pygtrans.” 2021, accessed: February 15, 2023.
[Online]. Available: https://pypi.org/project/pygtrans/

[30] R. Vallee-rai and L. Hendren, “Jimple: Simplifying java bytecode for
analyses and transformations,” 01 2004.

[31] Apptopia. (2022) Most used sdks for android mobile apps. https:
//apptopia.com/top-charts/top-sdks/google-play/all.

[32] Google. (2022) Google gson sdk. https://github.com/google/gson.

[33] [Apptopia, “Top android apps.” 2022, accessed: February 15, 2023.
[Online]. Available: https://apptopia.com/store-insights/top-charts/
google-play.

[34] G. Pass, A. Chowdhury, and C. Torgeson, “A picture of search,” in
Proceedings of the 1st international conference on Scalable informa-
tion systems, 2006, pp. 1–es.

[35] Yahoo. (2019) Ccpa summary. Yahoo. [Online]. Available: https:
//developer.yahoo.com/flurry/docs/analytics/privacyregulation/ccpa/

[36] T. T. Nguyen, M. Backes, N. Marnau, and B. Stock, “Share first,
ask later (or never?) studying violations of gdpr’s explicit consent
in android apps,” in 30th USENIX Security Symposium (USENIX
Security 21), 2021, pp. 3667–3684.

[37] F. Li, Z. Durumeric, J. Czyz, M. Karami, M. Bailey, D. McCoy,
S. Savage, and V. Paxson, “You’ve got vulnerability: Exploring effec-
tive vulnerability notifications.” in 25th USENIX Security Symposium
(USENIX Security 16), vol. 16, 2016.

[38] B. Stock, G. Pellegrino, C. Rossow, M. Johns, and M. Backes, “Hey,
you have a problem: On the feasibility of large-scale web vulnerability
notification.” in 25th USENIX Security Symposium (USENIX Security
16), vol. 16, 2016.

[39] A. Dabrowski, G. Merzdovnik, J. Ullrich, G. Sendera, and E. Weippl,
“Measuring cookies and web privacy in a post-gdpr world,” in Inter-
national Conference on Passive and Active Network Measurement.
Springer, 2019, pp. 258–270.

[40] M. Nouwens, I. Liccardi, M. Veale, D. Karger, and L. Kagal, “Dark
patterns after the gdpr: Scraping consent pop-ups and demonstrating
their influence,” in Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems, 2020, pp. 1–13.

[41] C. Matte, N. Bielova, and C. Santos, “Do cookie banners respect my
choice?: Measuring legal compliance of banners from iab europe’s
transparency and consent framework,” in 2020 IEEE Symposium on
Security and Privacy (SP). IEEE, 2020, pp. 791–809.

[42] K. M. Sathyendra, S. Wilson, F. Schaub, S. Zimmeck, and N. Sadeh,
“Identifying the provision of choices in privacy policy text,” in
Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, 2017, pp. 2774–2779.

[43] V. Bannihatti Kumar, R. Iyengar, N. Nisal, Y. Feng, H. Habib, P. Story,
S. Cherivirala, M. Hagan, L. Cranor, S. Wilson et al., “Finding a
choice in a haystack: Automatic extraction of opt-out statements from
privacy policy text,” in Proceedings of The Web Conference 2020,
2020, pp. 1943–1954.

[44] I. A. Bureau, “Transparency and consent frame-
work,” https://github.com/InteractiveAdvertisingBureau/
GDPR-Transparency-and-Consent-Framework, 04 2018, accessed
on 2023-03-26.

15

https://ccpa-info.com/home/1798-140-definitions/
https://ccpa-info.com/home/1798-140-definitions/
https://support.google.com/firebase/answer/9234069
https://support.google.com/firebase/answer/9234069
https://github.com/iBotPeaches/Apktool
https://developer.android.com/docs/
https://pypi.org/project/pygtrans/
https://apptopia.com/top-charts/top-sdks/google-play/all
https://apptopia.com/top-charts/top-sdks/google-play/all
https://github.com/google/gson
https://apptopia.com/store-insights/top-charts/google-play.
https://apptopia.com/store-insights/top-charts/google-play.
https://developer.yahoo.com/flurry/docs/analytics/privacyregulation/ccpa/
https://developer.yahoo.com/flurry/docs/analytics/privacyregulation/ccpa/
https://github.com/InteractiveAdvertisingBureau/GDPR-Transparency-and-Consent-Framework
https://github.com/InteractiveAdvertisingBureau/GDPR-Transparency-and-Consent-Framework

[45] P. Santhanam, H. Dang, Z. Shan, and I. Neamtiu, “Scraping sticky
leftovers: App user information left on servers after account deletion,”
in 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 2022,
pp. 2145–2160.

[46] K. Kollnig, P. Dewitte, M. Van Kleek, G. Wang, D. Omeiza, H. Webb,
and N. Shadbolt, “A fait accompli? an empirical study into the
absence of consent to third-party tracking in android apps,” in Sev-
enteenth Symposium on Usable Privacy and Security (SOUPS 2021),
2021, pp. 181–196.

[47] T. T. Nguyen, M. Backes, and B. Stock, “Freely given consent?
studying consent notice of third-party tracking and its violations of
gdpr in android apps,” in Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, 2022, pp.
2369–2383.

[48] S. Koch, B. Altpeter, and M. Johns, “The ok is not enough: A large
scale study of consent dialogs in smartphone applications,” in 32st
USENIX Security Symposium (USENIX Security 23), 2023.

[49] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “Whyper:
Towards automating risk assessment of mobile applications,” in 22nd
USENIX Security Symposium (USENIX Security 13), 2013, pp. 527–
542.

[50] W. You, B. Liang, W. Shi, P. Wang, and X. Zhang, “Taintman: An
art-compatible dynamic taint analysis framework on unmodified and
non-rooted android devices,” IEEE Transactions on Dependable and
Secure Computing, vol. 17, no. 1, pp. 209–222, 2017.

[51] W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer, “Android
taint flow analysis for app sets,” in Proceedings of the 3rd ACM
SIGPLAN International Workshop on the State of the Art in Java
Program Analysis, 2014, pp. 1–6.

[52] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang,
“Appintent: Analyzing sensitive data transmission in android for
privacy leakage detection,” in Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security, 2013, pp.
1043–1054.

[53] H. Fu, Z. Zheng, A. K. Das, P. H. Pathak, P. Hu, and P. Mohapatra,
“Flowintent: Detecting privacy leakage from user intention to network
traffic mapping,” in 2016 13th Annual IEEE International Conference
on Sensing, Communication, and Networking (SECON). IEEE, 2016,
pp. 1–9.

[54] S. Xi, S. Yang, X. Xiao, Y. Yao, Y. Xiong, F. Xu, H. Wang, P. Gao,
Z. Liu, F. Xu et al., “Deepintent: Deep icon-behavior learning for
detecting intention-behavior discrepancy in mobile apps,” in Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 2421–2436.

[55] L. Yu, X. Luo, J. Chen, H. Zhou, T. Zhang, H. Chang, and H. K.
Leung, “Ppchecker: Towards accessing the trustworthiness of android
apps’ privacy policies,” IEEE Transactions on Software Engineering,
vol. 47, no. 2, pp. 221–242, 2018.

[56] X. Wang, X. Qin, M. B. Hosseini, R. Slavin, T. D. Breaux, and J. Niu,
“Guileak: Tracing privacy policy claims on user input data for android
applications,” in Proceedings of the 40th International Conference on
Software Engineering, 2018, pp. 37–47.

Appendix A.
Email Notification Template

Dear $developer team,
We are a team of academic researchers from $affiliation,
conducting a research project on analyzing inconsistency
between privacy setting and third-party data collections in
mobile apps.

* Please note that this email is part of an academic
research project and is not meant to sell any products or
services.*

Based on our analysis, your app (pkgName) has provided
a privacy setting to users which declares to stop some data
collections of third-party libraries (we call it withdrawal).
However, we found your app didn’t stop these third-party
data collections as you declared when users made their deci-
sion. That is, your app still shares user data with third-party
libraries even after the user explicitly withdraws, which may
lead to a violation of privacy regulations.

In order for you to inspect the problem, we have pre-
pared a detailed report on such potential violation that we
have detected (please refer to the attachment for details).

Please note that we don’t offer a conclusive legal as-
sessment or consultancy on an individual app’s compliance.
Instead, we aim to enable developers to address the issues
before other parties might take any legal actions. As this
email is part of a research project in which we are trying
to understand why such inconsistency exists, it would be
immensely helpful to provide us with feedback regarding
your app.

(1) Were you aware of such inconsistency? Do you have
a clear idea of which third-party data collection should be
stopped in order to be consistent with your privacy settings?

(2) During the development process, were you aware of
the methods to withdraw third-party data collection? And
are there specific reasons why you fail to stop corresponding
data collection?

(3) Are there any changes you plan to apply to remedy
the outlined issues? What type of support (e.g., documenta-
tion or automated tools) can we provide would benefit you
to address such issues?

If you have further questions or wish not to receive
any further communication, please contact us, and we will
promptly follow the request.

Best regards,
$Research Team

Disclaimer: This study is part of a research project of the
$affiliation. The collected information will be used for
scientific purposes only. Your responses are pseudonymous.
We do NOT collect any personal information, publicize or
perform any actions against your apps, and your company.

Appendix B.
Meta-Review

B.1. Summary

This papers proposes a new tool named MOOChecker
which leverages a static taint flow analysis to first detect
opt-out buttons and the determine both code and data flows
which divert based on that choice. Together with a set of
known APIs which relate to opt-out in 200 major libraries,
the authors conduct an analysis of real-world apps. In doing
so, they found around 40% of 3.8k which use opt-out options
to have inconsistencies, i.e., do not opt-out for all used
libraries even if the user chooses so.

16

B.2. Scientific Contributions

• Independent Confirmation of Important Results with
Limited Prior Research

• Creates a New Tool to Enable Future Science
• Identifies an Impactful Vulnerability

B.3. Reasons for Acceptance

1) The MOOChecker tool finds 176 manually-
confirmed, zero-day opt-out inconsistencies. It
therefore expands on prior work in the space of
GDPR/CCPA violations.

2) MOOChecker provides a valuable basis for future
work, in particular related given that prior work has
operated in dynamic fashion which lacks coverage
and interaction with the apps.

3) The paper highlights a problem space for future
work, both in terms of vetting libraries and aiding
developers.

B.4. Noteworthy Concerns

One major concern shared by several reviewers is the po-
tential for over-reporting of findings. This is because unless
there is a clear usage of the data by the recipient (i.e., they
are a data controller rather than merely a processor), consent
might not be required or not be revokable. Nevertheless, the
PC felt the paper’s technical contribution is meaningful to
illuminate the problem space further.

17

	Introduction
	Overview
	Background
	Third-party Data Collection and Withdrawal
	Threat Model and A Motivating Example

	Methodology
	Overall Architecture
	Withdrawal Interface Detection
	Personal Information Flow Detection
	Inconsistency Check
	Flow-to-Choice Correlation
	Intention-to-Behavior Consistency Check

	Implementation
	Evaluation
	Dataset
	RQ1: Precision, Recall, and Accuracy
	RQ2: Analysis Time Distribution
	RQ3: Withdrawal Inconsistency Statistics

	Case Study
	Developer Notification
	Notification Campaign
	Developer Response

	Discussion & Limitations
	Related Works
	Privacy Regulation Compliance
	Mobile Privacy Leaks

	Conclusion
	Acknowledgments
	References
	Appendix A: Email Notification Template
	Appendix B: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

